积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(41)大模型技术(41)

语言

全部中文(简体)(40)

格式

全部DOC文档 DOC(16)PDF文档 PDF(13)PPT文档 PPT(12)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 41 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 基于大模型的企业架构建模助力银行数字化转型应用方案

    基于大模型的企业架构建模助 力银行数字化转型应用方案 目录 CONTENTS • 数字化转型背景与必要性 • 银行数字化转型现状与痛点分析 • 大模型驱动的企业架构建模方法论 • 技术架构设计与模型融合方案 • 数据治理与知识图谱构建 • 智能业务场景应用规划 • 大模型训练与优化策略 目录 CONTENTS • 风险控制与合规管理 • 实施路径与阶段目标 • 标杆案例与同业实践 化产品设计和精准营销,增强市场竞争力。 推动业务创新 大模型技术对金融业变革的推动作用 企业架构建模在转型中的核心价值 • 企业架构建模通过将战略目标分解为具体的业务和技术路径,确保银行数字化转型战略的有 效实施。 • 帮助企业明确业务能力和技术需求,推动战略目标与业务执行的紧密结合。 实现战略落地 • 通过企业架构模型,银行能够打通业务与技术的壁垒,实现业务流程与 IT 系统的高效协同。 • 促进业技融合 • 企业架构建模帮助银行梳理和整合各项业务能力,形成全面的能力地图,为数字化转型提供 清晰的方向和路径。 • 支持资源优化配置,提升运营效率,降低转型成本。 构建全能力地图 02 银行数字化转型现状与痛 点分析 传统银行系统多采用集中式架构,模块化程度低,导致系统灵活性不足,难以快速响应市场需 求和业务变化。 传统银行系统架构局限性分析 技术架构老化 现有架构难以支持高并
    40 积分 | 56 页 | 11.28 MB | 8 月前
    3
  • pdf文档 2025年以计算加速迈进智能化未来-IDC新一代云基础设施实践报告

    以计算加速迈进智能化未来 ⸺IDC新一代云基础设施实践报告 趋势:云服务能力持续跃升,加速企业数智化转型与创新 01 目录 1.1 技术全面升级,为复杂的企业在线业务提供保障 1.2 软硬一体协同优化,应对AI时代激增的数据冲击 1.3 持续的融合创新,助力企业的国际化布局 挑战:企业多元业务需求与海量AI数据的冲击 02 2.1 在线业务面临性能与效率的极限挑战 �.� AI数据处理与计算协同的复杂度激增 打造极致性能体验,为传统计算业务打开新空间 3.2 技术和架构创新,提升AI时代的向量数据处理和协同计算效率 3.3 强化硬件安全设计,持续增强安全保障能力 3.4 全球一致的云服务能力体系,全面助力企业国际化战略 优秀实践分析 04 4.1 小鹏汽车 4.2 微帧科技 4.3 嘎嘎射击 4.4 蚂蚁集团ZOLOZ 前言 IDC分析师认为:全球AI基础设施革新的浪潮中, 算力需求的爆发正在驱动云计算与边缘计算深 将是客户的关键优先事项,为垂直特定数据类型提供量身定制的云服务将创造有利的竞争优势。 云提供商须为跨行业数据采集、存储和计算需求的大幅增长做好准备。 在AI高速发展和在线业务快速膨胀的时代,企业用户对云基础设施的性能、成本、稳定性、安全 性等方面提出了全新的要求。为适应企业创新、降本增效以及业务出海等需要,云服务商不断通 过协同创新升级全栈服务品质,同时也利用自身融合发展的经验优势,助力企业积极开展国际化
    10 积分 | 27 页 | 5.31 MB | 6 月前
    3
  • word文档 AI大模型人工智能行业大模型SaaS平台设计方案

    .........................................................................................36 3.1 平台架构.............................................................................................39 3.1 平台的核心在于能够将复杂的人工智能模型转化 为易于使用的服务。这种服务不仅允许企业根据自身的需求定制化 模型功能,还能保证其在数据安全、隐私保护等方面的合规性。通 过云端计算资源,企业无需投入大量资金进行基础设施建设,即可 获得强大的 AI 能力,这极大地促进了中小企业的创新和发展。 此外,市场调研显示,大模型的应用前景非常广阔。根据 Precedence Research 的报告,全球人工智能市场在 17.5%。基于此,开发一个高效、稳定的大模型 SaaS 平 台,无疑是一个充满潜力的投资机会。 在设计方案中,需要重点考虑以下几个方面: 1. 模型选择与优化:需选择适合行业需求的大模型,并在此基础 上进行高效的模型优化,以确保在不同场景下的表现。 2. 数据处理能力:平台需要具备强大的数据处理和实时分析能 力,以支持对大规模数据集的处理,实现数据的高效利用。 3. 用户友好性:界面设计应直观易懂,支持多种使用场景,确保
    50 积分 | 177 页 | 391.26 KB | 8 月前
    3
  • word文档 DeepSeek智能体开发通用方案

    ....................................29 4. 系统架构设计..............................................................................................30 4.1 总体架构设计........................................... 定制化的智能体开发服务。智能体将具备自主学习能力,能够根据 业务需求动态调整其行为模式,并支持多任务并行处理。此外,方 案特别注重系统的可扩展性和兼容性,确保智能体能够无缝集成到 现有的企业信息化系统中,降低实施成本。 在技术架构方面,DeepSeek 智能体开发通用方案采用分层设 计,主要包括数据感知层、智能决策层和结果输出层。数据感知层 负责从多种数据源中采集信息,包括结构化数据、非结构化数据以 及实时流数据;智能 多维度数据分析,为企业战略制定提供科学依据。 以下是方案的主要实施步骤: 1. 需求调研与分析:深入了解 企业业务场景,明确智能体的功能需求与性能指标; 2. 系统设计 与开发:基于需求分析结果,完成智能体的整体架构设计与功能开 发; 3. 测试与优化:通过功能测试、性能测试和用户体验测试, 确保智能体的稳定性与高效性; 4. 部署与集成:将智能体集成到 企业现有系统中,完成数据对接与功能验证;
    0 积分 | 159 页 | 444.65 KB | 6 月前
    3
  • word文档 AI大模型人工智能数据训练考评系统建设方案(151页 WORD)

    ...................................28 3. 系统架构设计..............................................................................................30 3.1 系统总体架构............................................ 系统的主要应用场景包括但不限于: - 机器学习模型的训练过 程评估 - 深度学习网络的性能优化 - 训练数据的质量控制 - 计算资 源的最佳分配 - 训练效果的持续跟踪与改进 项目将在现有技术基础上,整合多方资源,采用模块化设计思 路,确保系统具有良好的扩展性和适应性。通过本项目的实施,将 建立起一套科学、规范、高效的人工智能数据训练考评体系,为 AI 技术的进一步发展提供有力支撑。 此外,本项目的实施还将促进人工智能技术在更广泛领域的应 用和推广,通过提供可靠的训练和评估工具,支持企业和社会各界 在人工智能领域的创新和实践。项目的成功实施将直接推动相关技 术的发展和标准化进程,为人工智能的健康发展奠定坚实的基础。 1.2 项目目标 本项目的核心目标是构建一个高效、精准且可扩展的人工智能 数据训练考评系统,旨在全面提升人工智能模型的训练质量和考评 效率。具体目标包括: 1. 提升数据训练效率: 通过优化数据处理流程和引入自动化工
    60 积分 | 158 页 | 395.23 KB | 7 月前
    3
  • word文档 CRM客户关系系统接入DeepSeek大模型应用场景设计方案(173页WORD)

    当前企业广泛使用的 CRM 系统在客户关系管理方面已形成标 准化流程,但面对日益复杂的业务场景和客户需求,传统系统暴露 出多个关键瓶颈。典型 CRM 系统通常包含客户信息管理、销售漏 斗跟踪、服务工单处理等基础模块,但数据分析深度不足,超过 68%的企业反馈系统仅能提供历史数据统计,缺乏预测性洞察。在 客户交互层面,约 42%的坐席人员需要同时打开 5 个以上子系统才 能完成客户画像构建,操作效率低下直接导致平均响应时间延长至 智能经济时代的价值释放,亟需通过大模型技术实现根本性突破。 1.2 DeepSeek 大模型的核心能力 DeepSeek 大模型作为新一代多模态 AI 基础模型,在 CRM 系 统智能化升级中展现出三大核心能力优势。其基于千亿级参数的 Transformer 架构,通过行业知识增强训练和垂直场景微调,能够 显著提升客户关系管理的效率与精准度。 在自然语言处理层面,模型具备高达 128K tokens 5000 万条结构化商业 知识条目。通过 RAG(检索增强生成)技术,能在 300ms 内完成 海量客户数据的关联分析,输出带溯源依据的决策建议。典型应用 场景包括: - 动态客户画像生成:融合基础信息、行为数据、社交 舆情等 15 个维度的特征 - 商机预测建模:基于历史成交数据构建 的预测准确率提升 37% - 风险预警系统:对异常订单的识别速度较 传统规则引擎快 8 倍 在流
    10 积分 | 179 页 | 1.22 MB | 1 月前
    3
  • word文档 AI知识库数据处理及AI大模型训练设计方案(204页 WORD)

    1 模型选择与架构设计...........................................................................52 3.1.1 模型类型选择.............................................................................54 3.1.2 模型架构设计..... 数据清洗与预处理:通过去重、缺失值填充、异常值处理等操 作,提升数据的纯净度和一致性。  数据标注与结构化:基于业务需求,对非结构化数据进行标注 和结构化处理,形成可被模型直接利用的知识库。  模型训练与优化:采用分布式训练架构,结合超参数调优和模 型剪枝等技术,提升模型的训练效率和性能。 在技术选型上,项目将优先采用开源的深度学习框架(如 TensorFlow、PyTorch)和分布式计算平台(如 Kuberne 项目的最终目标是为企业提供一套高效、可靠的知识库数据处 理及 AI 大模型训练方案,助力其在智能化转型中占据竞争优势。 通过本项目的实施,企业将能够显著提升数据处理能力和模型训练 效率,为后续的智能化应用开发和部署打下坚实的基础。 1.1 项目背景 随着人工智能技术的迅猛发展,大模型在各个领域的应用日益 广泛。然而,大模型的训练效能和精度在很大程度上依赖于高质量 的知识库数据处理。当前,许多企业和研究机构在构建和利用知识
    60 积分 | 220 页 | 760.93 KB | 7 月前
    3
  • word文档 审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)

    ..............................................................................24 3.1 DeepSeek 智能体的架构设计................................................................................................. 和监管框 架,人工分析效率低下且容易遗漏风险点。以某国际会计师事务所 的实践为例,其 2023 年内部评估显示,在金融资产减值测试项目 中,审计团队平均需要耗费 42%的工作时间用于数据清洗和基础分 析,而高风险领域的识别准确率仅为 68%。这种现状迫切需要通过 智能化工具实现效率突破。 DeepSeek 等大语言模型技术的成熟为审计变革提供了新的可 能性。相较于通用 AI 模型,审计智能体需要具备三个核心能力维 DeepSeek 智能体方案 异常检测覆盖率 预设规则覆盖 65%场 景 机器学习识别 92%场景 工作底稿生成效率 4 小时/份 20 分钟/份(自动校验) 在技术实现路径上,我们采用分层架构设计:底层通过微调后 的 DeepSeek 模型处理非结构化文档,中间层构建审计知识图谱实 现条款关联,应用层则部署风险预警、抽样推荐等具体功能模块。 某试点项目数据显示,该方案使应收账款函证程序的耗时缩短
    10 积分 | 212 页 | 1.52 MB | 3 月前
    3
  • word文档 基于AI大模型Agent智能体商务应用服务设计方案(141页 WROD)

    ..........................................................................................26 4. 技术架构设计................................................................................................. .........................................................................................33 4.2 系统架构................................................................................................... ........................................................................................79 10.1 部署架构选择.................................................................................................
    10 积分 | 141 页 | 647.35 KB | 3 月前
    3
  • word文档 股票量化交易基于DeepSeek AI大模型应用设计方案(168页 WORD)

    32 5. 系统架构设计........................................................................................................................................................................34 5.1 整体架构设计...... 高效处理大规模、多维度的金融数据,并通过深度学习模型提取出 复杂的市场模式和趋势。DeepSeek 采用了分布式计算架构,能够 实时处理海量交易数据,确保在低延迟的环境下进行高速分析和决 策。此外,其内置的算法库支持多种机器学习方法,包括卷积神经 网络(CNN)、循环神经网络(RNN)以及最新的 Transformer 架构,能够灵活应对不同的市场场景和需求。 在股票量化交易中,DeepSeek 技术的应用主要体现在以下几 准的买卖决策。此外,DeepSeek 还将引入自然语言处理技术,自 动解析和分析市场情绪,帮助交易者更好地把握市场情绪波动对股 价的影响。 在技术实现方面,项目将分阶段推进。第一阶段,重点在于搭 建基础数据平台,整合各类数据源,包括但不限于历史交易数据、 财务报表、新闻资讯等。第二阶段,将引入深度学习模型,进行数 据特征提取和模式识别,优化现有的交易策略。第三阶段,将实现 实时交易监控和自动
    10 积分 | 178 页 | 541.53 KB | 1 月前
    3
共 41 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
基于模型企业架构建模助力银行数字数字化转型应用方案2025计算加速迈进智能智能化未来IDC一代新一代基础设施基础设施实践报告AI人工人工智能行业SaaS平台设计设计方案DeepSeek开发通用数据训练考评系统建设151WORDCRM客户关系客户关系接入场景173知识知识库处理数据处理204审计领域构建Agent体提效商务服务应用服务141WROD股票量化交易168
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 - 2026 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩