积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(40)大模型技术(40)

语言

全部中文(简体)(39)

格式

全部DOC文档 DOC(16)PDF文档 PDF(12)PPT文档 PPT(12)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 40 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • word文档 生态环境保护基于多模态AI大模型智慧诊断应用设计方案(141页 WORD)

    项目编号: 生态环境保护基于多模态 AI 大模型智慧 诊断应用 设 计 方 案 目 录 1. 引言........................................................................................................................................... ............................................................................................9 1.3 多模态 AI 大模型的简介........................................................................................ ......22 3. 多模态 AI 大模型概述........................................................................................................................................................23 3.1 多模态学习的定义.......
    40 积分 | 149 页 | 294.25 KB | 1 月前
    3
  • ppt文档 DeepSeek消费电子行业大模型新型应用最佳实践分享

    C 应用逻辑 C 算法 算力 统一出入口 应用模板( A/B/C… ) 算法池( A/B/C… ) 算力池 大模型时代企业 AI 项目“烟囱式 ”建设痛点越发严重 智能化趋势下:多品牌多场景下的重复造车轮,导致模型算法和镜像等 AI 资产管理分散,无法沉淀复用和统一运用。 底层统一 上层统一 中层异构 AI 治理 集约敏捷的 AI 中台式建 设 业务系统 B 业务系统 C API 行业大模型 客户专属模型 模型 API 兼容 OpenAI 接口规范 复刻 Deep seel 的推理加速能力 一键发起模型部署 推理加速 DeepSeek 模 型 客 户 数 据 训练加速 DeepSeek 联 网 助 手 文档问答 知识摘要 • 模型 + 训练平台 + 应用构建 平台 全链路能力。 • 提供从训练——推理——应 智能客服 多轮改写 文档解析 向量检索 文档拆 分 意图识别 RAG 知识文档 知识问答 开放 对接 知识引擎 配置项 工作流 联网搜索 模型部署 服务管理 应用场景 大模型 广场 大模型精调 解决方案 腾讯云精调知识大模型 DeepSeek 系 列 模 型 DeepSeek 系 列 模 型 一键发起模型训练
    10 积分 | 28 页 | 5.00 MB | 9 月前
    3
  • ppt文档 从大模型、智能体到复杂AI应用系统的构建(61页 PPT)

    以及 Transformer 模型的多种技术模型积累 2019 年 GPT-2 BART RoBERTa ChatGPT 经过多类技术积累 ,最终形成针对人类反馈信息学习的大规模预训练语言模 型 2018 年 GPT-1 T5 BERT 2020 年 GPT-3 M2m- 100 XLM 进行海量数据学习训练 ,人类的反馈信息成 为模型学习的内容 OpenAI 公司于 三阶段训练技术构建 GPT 3.5 辨别式 AI 对现有内容进行分析、分类、判断、预测 客户流失预测 生成式 AI 自动生成开放的文本、图像、音频、视频等内容 短视频片段 广告视频 多模态生成 相对通用的人工智能 一个大模型解决多个问题 自适应地应对复杂外界环境的挑战 专用人工智能 一事一模型,每个模型完成特定智能任务 解决特定的智能问题 里程碑: ChatGPT 的成 练后,可以生成模 型在回答问题时 经历的思考过程。 推理大模型 :通过测试时拓展( Test-Time Scaling ) 、强化学习、蒸 馏 等技术,大模型的推理能力不断增强。 o3 通过模拟推理技术,能够暂停并反思自 身内部的思考过程,从而在回答问题前进 行更深入的推理,类似于人类的思考方式。 推理大模型的发展 Claude3.7 是 首 个混合推理 模 型,集普
    20 积分 | 61 页 | 13.10 MB | 3 月前
    3
  • word文档 AI大模型人工智能数据训练考评系统建设方案(151页 WORD)

    的 高质量和高可用性。 2. 实现精准模型考评: 设计多维度的考评指标体系,包括准确 性、召回率、F1 值等,结合可视化工具,全面评估模型性 能,确保考评结果的科学性和客观性。 3. 支持多场景应用: 构建灵活的考评框架,使其能够适应不同领 域(如自然语言处理、计算机视觉等)和不同规模的数据集, 满足多样化的业务需求。 4. 提高系统可扩展性: 采用模块化设计,支持随业务增长进行功 据管理是核心 功能之一,直接影响系统的运行效率和数据质量。首先,系统需具 备高效的数据采集能力,能够从多种数据源(如数据库、API 接 口、文件系统等)实时或批量导入数据。数据采集过程中应支持多 种格式(如 JSON、CSV、Excel 等)的解析,并能够自动识别和转 换数据类型,确保数据的完整性和一致性。 其次,系统需要提供强大的数据存储与管理功能。考虑到人工 智能训练数据的规模通常较大,系统应采用分布式存储架构,支持 理,包 括原始数据、预处理数据和训练数据集,确保数据的可追溯性和版 本控制。 在数据预处理方面,系统应集成常用的数据清洗、去重、归一 化、特征提取等功能,支持用户自定义数据处理流程。数据清洗模 块应能够自动识别并处理缺失值、异常值等问题,确保数据质量。 同时,系统应提供可视化的数据预处理工具,方便用户直观地查看 和处理数据。 此外,数据安全管理是数据管理需求中的重要环节。系统需实
    60 积分 | 158 页 | 395.23 KB | 7 月前
    3
  • pdf文档 基于大语言模型技术的智慧应急应用:知识管理与应急大脑

    定具有重要意义。智慧应急是应急管理信息化建设 的总体目标,强调要适应科技信息化发展大势,以信 息化推进应急管理现代化,提高监测预警、监管执 法、指挥决策、救援实战、社会动员等应急管理能力。 大语言模型是具有大规模参数的深度学习模 型,通过对海量文本的训练习得语言的统计规律, 从而具有理解和生成自然语言的能力,实现人机之 间的有效通信。自2018年双向编码表示模型(bidirec⁃ tional encoder representations 视角和技术路径。 1 大语言模型原理 大 语 言 模 型 通 过 词 嵌 入(word embedding)[3]、 Transformer 架构和注意力机制[1,4]、端对端神经网络 训练等方法和技术学习文本数据中的语义和语法规 律,从而具有理解文本并生成语法正确、语义连贯 的文本的能力。当训练的数据足够大,模型的参数 足 够 多 ,模 型 开 始 涌 现 某 些 能 力(emergent abili⁃ 大语言模型的知识获取基于联结主义的学习观 点,该观点认为智能源于大脑神经元的物理结构和 复杂的网络连接,是由大量如神经元的简单元素通 过非线性相互作用产生的集体行为结果,智能行为 的模拟可以通过构建大量简单计算单元组成的大规 模 网 络 ,并 不 断 调 整 网 络 单 元 间 连 接 权 重 来 实 现[9-10]。优势在于从数据中学习的能力,善于处理复 杂的、模糊的问题。 1.1.2 主动学习 与传统结构化的知识获取方式相比,大模型采
    20 积分 | 8 页 | 3.21 MB | 3 月前
    3
  • word文档 CRM客户关系系统接入DeepSeek大模型应用场景设计方案(173页WORD)

    项目编号: 客户关系 CRM 系统接入 DeepSeek 大模 型应用场景 设 计 方 案 目 录 1. 项目背景与目标................................................................................................................................ .........................................................................................150 13.1 多模态能力扩展.............................................................................................. 万条客户咨询,但仅能通过预设标签进行简单分类,导致 30%的潜 在商机因未能及时识别而流失。与此同时,大语言模型技术的突破 性发展为 CRM 系统智能化升级提供了全新可能。DeepSeek 大模 型凭借其千亿级参数规模、多轮对话理解能力和行业知识库定制功 能,能够有效解决传统 CRM 的痛点。 本项目的核心目标是通过深度集成 DeepSeek 大模型,构建具 备三大核心能力的智能 CRM 系统:首先,实现客户意图的实时精
    10 积分 | 179 页 | 1.22 MB | 1 月前
    3
  • word文档 审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)

    .........................................................................................38 3.2.1 多源数据接入方案............................................................................................. 能性。相较于通用 AI 模型,审计智能体需要具备三个核心能力维 度:首先是领域知识的深度适配,包括国际财务报告准则 (IFRS)、美国通用会计准则(GAAP)等超过 2000 项条款的准 确解析;其次是多模态数据处理能力,既能解析 PDF 财报和扫描 凭证,又能处理 Excel 底稿和数据库日志;最后是可追溯的推理链 条,每个审计结论都必须具备可验证的逻辑路径。以下为审计智能 体与传统工具的对比差异: 流程自动化(RPA)的局部应用虽能提升基础核对效率,但在 面对非结构化数据(如合同文本、邮件通信)时仍显乏力。某上市 公司审计案例显示,其采购循环审计中仍有 62%的供应商资质验证 需要人工复核扫描件,这类场景亟需具备多模态处理能力的智能体 支持。同时,审计质量控制的最后一公里问题突出,现有系统缺乏 对审计底稿逻辑完备性的自动校验能力,导致约 28%的监管问询源 于底稿链条断裂。 在此背景下,构建深度融合审计专业知识的智能体成为破局关
    10 积分 | 212 页 | 1.52 MB | 3 月前
    3
  • pdf文档 CAICT算力:2025综合算力指数报告

    取决 于算力、存力、运力以及发展环境本身,模型能力也成为决定人工智能深度赋 能的关键。因此,中国信通院研究团队持续优化综合算力指标体系,在往年基 础上,增加模型能力的呈现,从算力、存力、运力、模力、环境多个维度,更 加准确剖析我国算力产业发展态势。 《2025 综合算力指数》为我们提供了一个全面而系统的视角来洞察我国算 力发展最新进展。通过科学的指数体系构建,将“综合算力”解构为几十余项具 升了算力资源的调配效率;此外,模型技术与产业应用的双轮驱动, 进一步加速了算力向现实生产力的转化。 结合算力产业发展现状、趋势和重要影响因素,中国信通院进 一步完善综合算力指数体系,新增“模力”分指数,优化评价指标。 整体上,从算力、存力、运力、模力、环境等维度衡量我国各省级 行政区的综合算力发展情况,并通过算力分指数评估全国各城市的 算力发展水平。 综合算力指数,河北省、江苏省、广东省、浙江省、北京市等 位居全国前列。其中,算力分指数方面,河北省、浙江省、江苏省 等全国领先;存力分指数方面,广东省、江苏省、河北省等表现优 综合算力指数 秀;运力分指数方面,浙江省、上海市、江苏省等相对靠前;模力 分指数中,北京市、广东省、浙江省等表现出色。环境分指数中, 青海省、内蒙古自治区、河北省等表现杰出。城市算力分指数中, 廊坊市、张家口市、大同市、广州市、杭州市等位居前列。 我国算力产业发展已取得一定进展,但产业数字化转型进程仍
    20 积分 | 54 页 | 4.38 MB | 3 月前
    3
  • pdf文档 大模型技术深度赋能保险行业白皮书151页(2024)

    大模型技术在保险行业的应用现状及成效···············21 1.1.1 数据:多措并举缓解短缺状态· · · · · · · · · · · · · · · · · · · · 10 1.1.2 算力:单芯片算力达新高,国产化初具规模· · · · · · · · · · · 12 1.1.3 模型:多模态崛起,端侧模型影响未来终端应用· · · · · · · · 14 2.1 全球保险行业的发展趋势· · · 27 3.保险业落地实践篇· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43 1.1.4 应用:日益广泛深入,多领域齐头并举· · · · · · · · · · · · · · 17 3.2 保险垂直领域大模型构建及评测· · · · · · · · · · · · · · · · · · · · 52 3 · · · · · · · · · · · · · · · · · · · · · · 131 6.1.2 应用场景:由非决策类场景向决策类场景过渡· · · · · · · 135 6.1.3 多模态大模型:落地应用潜力巨大· · · · · · · · · · · · · · · · 136 6.2 行业实践建议· · · · · · · · · · · · · · · · · · · ·
    20 积分 | 151 页 | 15.03 MB | 3 月前
    3
  • word文档 AI知识库数据处理及AI大模型训练设计方案(204页 WORD)

    随着人工智能技术的迅猛发展,知识库数据处理及 AI 大模型 训练已成为推动智能化应用落地的核心环节。本项目旨在构建一套 完整的数据处理与模型训练方案,以满足企业在复杂场景下的智能 化需求。项目通过对多源异构数据的采集、清洗、标注和结构化处 理,打造高质量的知识库,为后续的 AI 模型训练提供坚实的基 础。同时,结合先进的深度学习技术和规模化计算资源,设计高效 的模型训练流程,确保模型在准确性、泛化能力和计算效率方面达 作,提升数据的纯净度和一致性。  数据标注与结构化:基于业务需求,对非结构化数据进行标注 和结构化处理,形成可被模型直接利用的知识库。  模型训练与优化:采用分布式训练架构,结合超参数调优和模 型剪枝等技术,提升模型的训练效率和性能。 在技术选型上,项目将优先采用开源的深度学习框架(如 TensorFlow、PyTorch)和分布式计算平台(如 Kubernetes、Spark),以确保方案的灵活性和可扩展性。同时, 存储和检索等多个环节,每个环节都存在技术难点和优化空间。例 如,数据采集需要考虑多源异构数据的兼容性问题,数据清洗则需 要处理缺失值、噪声和不一致性等。这些问题的解决方案,直接影 响到最终模型训练的成果。 为了应对上述挑战,本项目旨在设计一套全面的知识库数据处 理及 AI 大模型训练方案,具体包括以下核心内容:  数据采集模块:支持多源异构数据的自动化采集和整合;  数据清洗模块:提供多种数据清洗算法,确保数据质量;
    60 积分 | 220 页 | 760.93 KB | 7 月前
    3
共 40 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
生态环境生态环境保护基于多模AI模型智慧诊断应用设计方案设计方案141WORDDeepSeek消费电子行业电子行业新型最佳实践分享从大智能体到复杂系统构建61PPT人工人工智能数据训练考评建设151语言技术应急知识管理大脑CRM客户关系客户关系接入场景173审计领域Agent体提效204CAICT算力2025综合指数报告深度赋能保险保险行业白皮皮书白皮书2024知识库处理数据处理
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 - 2026 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩