Deepseek冲击波:医疗AI赋能,大数据价值深度挖掘10 积分 | 36 页 | 10.06 MB | 6 月前3
公共安全引入DeepSeek AI大模型视频智能挖掘应用方案项目编号: 公共安全引入 AI 大模型视频智能挖掘 应 用 方 案 目 录 1. 引言...............................................................................................................5 1.1 背景介绍........................ .........................................15 2.1.1 视频数据采集.............................................................................17 2.1.2 数据存储与管理................................................. ...........................................................................................31 3.1 数据源与输入......................................................................................34 3.1.10 积分 | 144 页 | 318.04 KB | 3 月前3
AI大模型人工智能数据训练考评系统建设方案(151页 WORD)项目编号: AI 大模型人工智能数据训练考评系统 建 设 方 案 目 录 1. 项目背景与目标............................................................................................6 1.1 项目背景....................................... .........................................................................................13 2.1.1 数据管理需求.............................................................................16 2.1.2 模型训练需求.. ..........................................34 3.2.1 数据采集模块.............................................................................36 3.2.2 数据预处理模块................................................60 积分 | 158 页 | 395.23 KB | 4 月前3
AI知识库数据处理及AI大模型训练设计方案(204页 WORD)项目编号: AI 知识库数据处理及 AI 大模型训练 设 计 方 案 目 录 1. 项目概述.......................................................................................................7 1.1 项目背景............................. .........................................14 2. 知识库数据处理方案..................................................................................15 2.1 数据来源及采集.............................................. 2.1.1 内部数据来源.............................................................................20 2.1.2 外部数据来源.............................................................................21 2.1.3 数据采集工具及方法60 积分 | 220 页 | 760.93 KB | 4 月前3
人工智能技术及应用(56页PPT-智能咨询、智能客服)金融资讯大数据服务 用智慧发现信息价值 Discover information 用智慧发现信息价值 Discover information 金融资讯大数据 利用人工智能分析挖掘技术,针对金融市场信息获取和分类需求,实现金融资讯大数据癿采集、检索、 分析、挖掘、推送等应用。 数据采集 互联网 互联网 数据 行内结构化 数据 利用全斱位高敁癿大数据采集技术,提供多来源、多渠道、 多时敁、 多类型数据癿获取和收集工具 和 数据采集 手段,实现数据癿全面融合。 路透、万得、彭博、 合作机构数据(保 险、证券等) …… 网页、社交媒体、 论坛 …… 第三斱数 据 文档、图片、影 音 …… 资金、财务、信 贷、员工…… 用智慧发现信息价值 Discover Discover information 日志、交易报文 … … 宏观数据 GDP( 国内生产总值 ), 变劢率 ;CPI( 居民消费价格指数 ), 变劢 率 ;PPI( 工业生产价格指数 ), 变劢率 ;M1/M2( 货币流通量 ); 固 定资 产投资变劢 ; 制造业采贩经理人指数 ; 进出口贸易额 ; 外 资投资增 减额 ; 工业总产值 ; 股市交易行情及成交量 ; 央行黄 金及外汇储备10 积分 | 55 页 | 5.54 MB | 2 天前3
深度学习在智能助理产品中的应用(20页PPT-吾来)[Honnibal 2016] 3. Attend 4. Predict 1. Embed 2. Encode • 将每个词或字映射为向 量 深度学习的应用:意 图识别 l 基于深度学习,完全数据驱动,无需特征工程 l 效果明显优于传统机器学习模型 l 在 20 多个领域下准确率可达 96% Softmax Attention LSTM LSTM ■ 深度学习的应用 :实体抽 取 l 基于深度学习,完全数据驱 动,无需特征工程 l 方法通用,适用于多种领域 不同类型的实体抽取 l 效果明显好于传统方法 l 从非结构化的对话中挖掘结构化的知识 l 将知识进行沉淀和统一维护 l 提高客服效率和质量,提升用户体验 l 知识点数量庞大,无监督的聚类方法效果很差 无监督和有监督方法相结合 l 词向量和句向量相结合 l 机器与人工相结合 深度学习的应用:知 识挖掘 解决 方案 知识库 主要 挑战 核心 价值 层次聚类 相似度计算 词向量训练 句向量训练 相似度计算 问题检索 人工审核 问题挖掘 主题词挖掘 目标 [Conneau 2017] 有监督 学习 无监督 学习 历史语料 主题词 预处理10 积分 | 20 页 | 427.93 KB | 2 天前3
埃森哲报告:AI赋能保险,三大应用场景如何重构价值链?pdf地利用数据,挖掘所有数据 集中隐藏的价值。 AI 三大应用场景:人力资源+流程管理+数据分析 “人工智能”一词包含许多不同的技术和能力。我们可以将人工智能定义为:能 够感知、理解、行动和学习的计算机系统。换句话说,一个系统可以感知它 周围的世界,分析和理解它接收到的信息,并在此基础上采取行动,通过学 习改进自己的性能。 通过利用机器与环境、人以及数据进行交互,这项技术可以提高人类和机器 而人工智能的实际应用则要更进一步,它意味着结合智能技术和人类智慧, 并应用于商业的每一个流程,帮助企业解决最复杂的挑战,开辟新市场或者 创造全新的收入来源。 如果保险公司将人工智能重点应用于人力资源、工作流程和数据管理方面, 那么他们将从中获得最大效益。 在保险公司面临巨大压力之际,人工智能领域正在取得飞速进展。竞争变得 异常激烈,新的竞争者正在颠覆现有的商业模式。受其他行业技术快速发展 的 消费者行业的一个方面。 此外,保险产品本身也在发生变化。保险公司正在从简单的赔偿模式向事故 预防和风险管理模式转变。为了让这些新产品发挥作用,保险公司必须能够 实时控制并主动响应大量数据。分析和操作这些数据所需的速度和规模都远 远超出了人类的能力。 以上变化要求保险公司必须改进其产品设计和客户服务,而人工智能将在其 中发挥决定性作用。事实上,根据埃森哲对于未来劳动力的调查,63%的人10 积分 | 11 页 | 422.61 KB | 2 天前3
基于大语言模型技术的智慧应急应用:知识管理与应急大脑自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自然语言处理技术的边界,也正在改变知识获取和创 新的模式,将对应急管理体系发展、能力要求以及实 践操作产生深远的影响。在技术进步的强大动力牵 引下,需要重新审视并优化应急管理信息化建设路 通 过 词 嵌 入(word embedding)[3]、 Transformer 架构和注意力机制[1,4]、端对端神经网络 训练等方法和技术学习文本数据中的语义和语法规 律,从而具有理解文本并生成语法正确、语义连贯 的文本的能力。当训练的数据足够大,模型的参数 足 够 多 ,模 型 开 始 涌 现 某 些 能 力(emergent abili⁃ ties)[5],不仅能够理解和生成自然语言,还具有抽象 过非线性相互作用产生的集体行为结果,智能行为 的模拟可以通过构建大量简单计算单元组成的大规 模 网 络 ,并 不 断 调 整 网 络 单 元 间 连 接 权 重 来 实 现[9-10]。优势在于从数据中学习的能力,善于处理复 杂的、模糊的问题。 1.1.2 主动学习 与传统结构化的知识获取方式相比,大模型采 用自监督学习方法,主动捕捉训练文本中更深层次 的特征和规律,而非在预设知识结构下的信息抽20 积分 | 8 页 | 3.21 MB | 2 天前3
DeepSeek在金融银行的应用方案3 图像识别与处理..................................................................................18 2.4 数据挖掘与分析..................................................................................20 3. 金融银行应用场景 4.1 数据准备与处理..................................................................................71 4.1.1 数据收集与清洗.........................................................................73 4.1.2 数据标注与分类 数据标注与分类.........................................................................75 4.1.3 数据存储与管理.........................................................................77 4.2 模型开发与训练......................10 积分 | 154 页 | 527.57 KB | 6 月前3
基于大模型的企业架构建模助力银行数字化转型应用方案力银行数字化转型应用方案 目录 CONTENTS • 数字化转型背景与必要性 • 银行数字化转型现状与痛点分析 • 大模型驱动的企业架构建模方法论 • 技术架构设计与模型融合方案 • 数据治理与知识图谱构建 • 智能业务场景应用规划 • 大模型训练与优化策略 目录 CONTENTS • 风险控制与合规管理 • 实施路径与阶段目标 • 标杆案例与同业实践 • 预期效益与 捷、高效、个性化的金融服务体验,推 动银行必须转型以满足市场需求。 1 2 3 大模型技术为金融业带来前 所未有的变革机遇,通过提 升数据处理能力、优化决策 流程和创新服务模式,助力 银行实现数字化转型。 大模型能够快速分析海量数据,识别潜在风险,提升 银行风险管理的精准性和效率。 辅助风险管理 通过大模型技术,银行可以更高效地评估客户信用状况, 缩短信贷审批周期,提升客户体验。 现有架构难以支持高并发和大规模数据处理,无法满足日益增长的线上业务需求,限制了银行 的业务拓展能力。 系统扩展性差 由于系统复杂且依赖老旧技术,维护和升级成本居高不下,且存在较高的故障风险,影响业务 连续性。 维护成本高 数据孤岛与业务协同效率问题 数据分散存储 银行内部各业务系统独立运行,数据分散存储,缺乏统一的数据管理和整合机制,导致数 据孤岛现象严重。 业务协同困难 数据价值挖掘不足 由40 积分 | 56 页 | 11.28 MB | 5 月前3
共 37 条
- 1
- 2
- 3
- 4
