积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(8)技术工具(8)

语言

全部中文(简体)(8)

格式

全部PPT文档 PPT(5)PDF文档 PDF(3)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 8 个.
  • 全部
  • 人工智能
  • 技术工具
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 从智慧教育到智慧课堂:理论、规范与实践

    赵建华 教授、博导 南方科技大学高等教育研究中心、联合国教科文组织国际高等教育创新中心 Email: zhaojh@sustc.edu.cn 从智慧教育到智慧课堂: 理论、规范与实践 智慧教育的内涵与特征 3 智慧战略引重视 • 2008 年 IBM 提 出智慧地球战略 智慧教 育 已 成 共 识 新加坡 2006 年iN2015 计划 智慧教育计划 提出 建立学习者为中
    10 积分 | 74 页 | 10.39 MB | 6 月前
    3
  • ppt文档 DeepSeek大模型赋能高校教学和科研2025

    1. 人工智能发展简史 2. 人工智能思维 3. 大模型: 人工智能的前沿 4. 高校本地部署 DeepSeek 大模 型 5. AIGC 应用与实践 6. 基于大模型的智能体 7. AI 赋能高校科研 8. AI 赋能高校教学 目录 厦门大学大数据教学团队作品 2025 年 2 月 1.1 图灵测试 1.2 人工智能的诞生 1.3 人工智能的发展阶段 多次测试后 ,如果被测 试者机器让 平均每个测试者做出 超过 30% 的误 判 ,那么这台机器 就通过了测试 , 并被认为具有人 类智能 1.1 图灵测试 人工智能的诞生可以追溯到 20 世纪 50 年代。 当时 ,计算机科学刚刚起步 ,人们开始尝试通过计算机程序来模拟人类的思维 和 行为。 在这个背景下 , 一些杰出的科学家和工程师们开始研究如何使计算机具备更高级的功能 1956 ,他们共同探讨和研究人工智能的发展和应用前景 这次会议的主题围绕着人工智能的定义、 研究方法和应用场景展开。 与会者们深入探讨了人工智能的基本概念、 算法和技术, 以及其在各个领域的应用潜力。 他们共同认识到 ,人工智能的研究和发展将为人类带来巨大的变革和进步 1.2 人工智能的诞 生 在这次会议上 , “人工智能”这个词汇被约翰 . 麦卡锡( John McCarthy ) 首次提出。 与会者们不仅对人工智能的研究和应
    10 积分 | 123 页 | 15.88 MB | 6 月前
    3
  • ppt文档 华为昇腾DeepSeek解决方案

    对强化学习的创新使用, 可以让大模型便捷的获 得 通用性 + 专用性, 可以满足各应用场景需求 • DS 对通过从模型结构到训推全流程的极致工程优化, 大幅提升 AI 的计算效率, 提升模型落地经济性 • 中国 AI 公司首次以关键创新贡献者的身份加入到全 球 AI 竞争中,冲击美国 AI 霸权 • 打破 NV+OpenAI 的资金、技术、人才的垄断,全球 重新思考中美技术路线的选择 30% GRPO :群体进化的智慧筛选器 自我验证机制: AI 的 " 错题本系 统 " 混合专家模型的 " 智能路由器“ 多头潜在注意力 MLA :空间压缩术 训练框架加速: 16 到 3 的量化压 缩, 通信降低 89% 推理加速:预加载,动态批处理等 模型、数据、工具链、部署全开源 蒸馏技术使能第三方模型性能 DeepSeek V3 :实现极致性能,稀疏 MOE 提质 d, DM istriLb ti可 o n 以 将 K V C a c h e 降 低 为 = 1 . 7 % 只需存储图中的 c v, K 即可; 考虑到矩阵乘法结合律,具体实现过程中 W UK可以与 WUQ 融合、 WUV可 以与 Wo融合,从而无需为每个 query 计算 key-value 值。 t R t K 相比于 MHA ,
    0 积分 | 32 页 | 2.52 MB | 5 月前
    3
  • ppt文档 山东大学:DeepSeek 应用与部署

    技术创新—模型架构 | V3 PPO : Proximal Policy Optimization GRPO : Group Relative Policy Optimization 强化学习让智能体( Agent )在环境 ( Environment )中不断尝试、学习 ,并优化自己 的策略( Policy ) ,最终获得最大化的奖励 ( Reward )。 DeepSeek 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 自动触发行为) 。 • 4. 终极能力层 自主进化与创造性突破 ,包括概念空间探索(通过对抗网络探索新合金成分等) 决策过程的信息。 • 3. 特征蒸馏 特征蒸馏涉及将教师模型中间层的知识转移到学生模型中。通过对齐两个模 型的隐藏表示 ,学生模型可以学习到更丰富和更抽象的特征。 蒸馏、微调、 RAG 微调: 又叫精调 ,相当于学生意识到自己某门课有 短 板 ,然后自己找参考书恶补了一下 ,从而补上短 板 蒸馏: 是学生通过模仿老师的解题思路 ,达到和老 师 相似的知识水平。 RAG :
    10 积分 | 79 页 | 6.52 MB | 5 月前
    3
  • pdf文档 英特尔-工业人工智能白皮书2025年版

    动密集型、资源密集型企 业,向技术密集型、知识密集型的高端化、智能化、绿色化方向转型升级,打造依托于人工智能、大 数据、云计算等现代信息技术的新质生产力。 工业 AI 和大模型的应用,已经渗透到工业生产的产品设计、企业流程管理规划、智能化生产、设备预 测性维护、供应链优化、创新服务、绿色制造、智能客服等众多环节,它通过处理和分析海量工业数 据,帮助企业在上述各个环节中做出最优的智能化决策 AI 和工业 大模型能为汽车、消费电子、新能源锂电、半导体制造等重点行业所带来的赋能创新机会,以及当前 大模型在工业领域落地应用所面临的挑战和英特尔针对工业 AI 和大模型落地部署从硬件,到软件,到 整体方案的技术赋能。 英特尔希望通过本白皮书,促进工业 AI 技术的广泛应用,并与行业伙伴共同探讨和制定工业 AI 的标准 化流程和最佳实践,共同构建开放、协同的工业 AI 生态系统,推动制造业向智能制造转型升级,赋能 工业化,预计从 2022 年至 2032 年,工业 AI 市场规模将以 46% 的年均复合增长率高速成长。 相较于发达国家,中国制造企业的 AI 应用率相对较低,大约在 11% 左右。Gartner 预测,到 2027 年,中国制造业的 AI 使 用渗透率将以 10% 的年复合增长率上升。 随着技术的不断进步和应用场景的拓展,我们认为工业 AI 有望成为推动工业 4.0 和智能制造发展的关键力量。 1
    0 积分 | 82 页 | 5.13 MB | 5 月前
    3
  • pdf文档 AI跃迁派:2025年DeepSeek零基础完全指南

    五、全民生产力革命 1.高频场景:AI 赋能日常生活 DeepSeek 通过技术普惠,正在重塑个人与组织的生产力模式,以下是三大用户群体的 典型应用场景: ①学生党:从题海战术到精准学习 ⚫ 论文润色:上传论文草稿→输入“优化学术表达,确保符合 APA 格式”→10 分钟完 成专业级修改 ⚫ 知识点图谱:输入“用思维导图整理高中生物遗传学核心概念”→生成可打印的学习 -深圳外卖小哥用 DeepSeek 开发接单优化系统,月收入提升 230% -新疆牧民通过 AI 语音助手实现畜牧疾病远程诊断,死亡率降低 62% 六、未来图景与人类共生 1.技术进化:从工具到伙伴的范式跃迁 DeepSeek 的持续迭代正在重新定义人机关系,其技术发展呈现三大趋势: ①认知协作革命 ⚫ 智能增强:通过脑机接口技术,用户可直接用思维操控 DeepSeek 生成方案,写 城市智能中枢:在深圳试点中,DeepSeek 实时优化 1300 个红绿灯,早高峰通勤 时间缩短 28% ⚫ 危机预警网络:通过分析社交媒体情绪波动,提前 48 小时预测群体事件 2.产业重构:从竞争到共生的生态革命 DeepSeek 正在催生“AI 原生经济”,重构传统产业逻辑: 底层逻辑转变:企业核心竞争力从资源占有转向智能连接密度——即与 AI 系统协同的 深度与广度
    10 积分 | 21 页 | 1.01 MB | 6 月前
    3
  • pdf文档 2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告

    强推理路径对比 (DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 模态穿透赋能推理边界拓展:Align-DS-V ➢ 合成数据及Test-Time Scaling: 突破数据再生产陷阱 FRAMEs 和 事实性推断任务 Simple-QA上表现突出 5 回顾:Pre-Training Scaling Law ➢ Pre-Training Scaling Laws: 预训练模型上广泛观察到的现象,协调了计算量C、模 型参数量N和数据大小D之间的关系 6 回顾:Post-Training Scaling Law ➢ Post-Training 阶段,随着训练时计算量(来自RL的Training阶段)和 reward hacking 而retraining reward model 需要大量的计算资源,可能会复杂化整个流程 ➢ 训练模板:选择最简单的 Thinking Process,直接观察到最直接的RL过程下的表现 基于规则的奖励 (Rule-Based Reward) : 准确率奖励 + 格式奖励 10 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1
    10 积分 | 76 页 | 8.39 MB | 6 月前
    3
  • ppt文档 浙江大学-DeepSeek模型优势:算力、成本角度解读2025

    Al 加速器的互联带宽 算力: 2024 年禁止台积电代工 7nm 工艺的国内芯 片 存力: 2024 年禁止 HBM 芯片 光刻机: 2024 年限制荷兰 ASML 出口 7nm 光刻机到 中国 时代背景:算力卡脖子 deepsee k DeepSeek 等国内大模型的“上甘岭”时刻 Al 算法与系统协同深度优化 反斜面坑道
    10 积分 | 23 页 | 7.53 MB | 5 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
智慧教育课堂理论规范实践DeepSeek模型赋能高校教学科研2025华为解决方案解决方案山东东大大学山东大学应用部署英特特尔英特尔工业人工智能人工智能白皮皮书白皮书年版AI跃迁基础完全指南R1Kimi1.5及类推理推理模型开发解读报告浙江浙江大学优势算力成本角度
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩