积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(8)技术工具(8)

语言

全部中文(简体)(8)

格式

全部PPT文档 PPT(5)PDF文档 PDF(3)
 
本次搜索耗时 0.041 秒,为您找到相关结果约 8 个.
  • 全部
  • 人工智能
  • 技术工具
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 山东大学:DeepSeek 应用与部署

    RL DeepSeek 应用场 景 DeepSeek 的能力层级 • 1. 基础能力层 多模态数据融合与结构化理解 ,包括跨模态语义对齐(文本、 图像、 音频、 视频、 代 码、传感器数据统一语义) 和动态数据治理(解决数据缺失、 噪音干扰、 概念飘逸等) , 支持 200 多 种数据格式自动解析。 • 2. 中级能力层 领域问题建模与复杂推理 ,包括领域自适应学习(建立医、 因果推理引擎(建立因果图模型) 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 自动触发行为) 。 • 4. 终极能力层 自主进化与创造性突破 , 1. 内容生成类 :文本生成、代码生成、创 意生成和数据模拟。 • 2. 信息处理类 :文本摘要、信息抽取、 情感分析和多语言翻译。 • 3. 对话交互类 :角色扮演、多轮对话、 反问引导。 • 4. 技能应用类 :数学计算、代码解释、 逻辑推理。 • 5. 个性化定制类 :风格迁移、知识库绑 定、偏好记忆。 • 6.
    10 积分 | 79 页 | 6.52 MB | 9 月前
    3
  • ppt文档 DeepSeek大模型赋能高校教学和科研2025

    团队联系方式: ziyulin@xmu.edu.cn 厦门大学大数据教学团队 1. 人工智能发展简史 2. 人工智能思维 3. 大模型: 人工智能的前沿 4. 高校本地部署 DeepSeek 大模 型 5. AIGC 应用与实践 6. 基于大模型的智能体 7. AI 赋能高校科研 8. AI 赋能高校教学 目录 厦门大学大数据教学团队作品 2025 年 2 月 ,能够理解更复杂的语意和语 境 。这使得它们能够产生更准确、 更连贯的回答 可迁移性高 学习到的知识和能力可以在不同 的任务和领域中迁移和应用 。 这 意味着一次训练就可以将模 型应 用于多种任务,无需重新 训练 语言生成能力 大模型可以生成更自然 、更流 利 的语言,减少了生成输出时 呈现 的错误或令人困惑的问题 3.1 大模型的概 念 3.2 大模型的发展历 ,机器学习包含了深度学习 ,深度学习可以采用不同的模型 , 其中一种模型是预训练模型 ,预训 练模型包含了预训练大模型(可以简称为“大模型”) ,预训练大模型包含了预训练大语言模型(可以简称为“大语言模 型”) ,预训练大语言模型的典型代表包括 OpenAI 的 GPT 和百度的文心 ERNIE , ChatGPT 是基于 GPT 开发的大模型 产品, 文心一言是基于文心 ERNIE 开发的大模型产品
    10 积分 | 123 页 | 15.88 MB | 9 月前
    3
  • ppt文档 华为昇腾DeepSeek解决方案

    DeepSeek-V3/R1 OpenAI-o1/o3 算力 x 数据 重新定义 Scaling Law 延续智能涌现的 方向 2017 谷歌发布首个 Transformer 架 构 模 型 2023 ChatGPT 模型能力突破 开启 NLP 时代 2012 AlexNet 模型能力突破 开启 CV 时代 1998 LeNet 首个 CNN 架构模型 3 Huawei Proprietary - Restricted Distribution 下一代 AI 技术 Mamba 、空间智能 等 算力 x 数据 x 思 考 模 型 效 果 低成本完美对标 OpenAI O1 ,突破精确语义理解及复杂推理任务 DeepSeek-V3 是一款 MoE 模型,总参数量 671B ,激活参数量 37B ,采用 2048 张 H800 o1 ) 以 2 阶段 SFT+2 阶段 RL 完成,从而解决 R1-Zero 可读性差、 多种 语言混合问题 本次开源同时发布了 6 个基于 DeepSeek-R1 蒸馏的更小稠密模 型 ( Qwen/LLaMa 1.5B 7B 14B 32B 70B ) DeepSeek-R1 以 DeepSeek-V3 Base ( 671B )为基础模型, 使 用 GRPO 算法作为
    0 积分 | 32 页 | 2.52 MB | 9 月前
    3
  • pdf文档 2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告

    (DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 模态穿透赋能推理边界拓展:Align-DS-V ➢ 合成数据及Test-Time Scaling: 突破数据再生产陷阱 Simple-QA上表现突出 5 回顾:Pre-Training Scaling Law ➢ Pre-Training Scaling Laws: 预训练模型上广泛观察到的现象,协调了计算量C、模 型参数量N和数据大小D之间的关系 6 回顾:Post-Training Scaling Law ➢ Post-Training 阶段,随着训练时计算量(来自RL的Training阶段)和 Test-Time 回顾:Post-Training Scaling Law 为什么我们需要后训练 Scaling-Law ? ➢ 随着模型尺寸逐渐增大,预训练阶段参数 Scaling Up 带来的边际收益开始递减;如果想要深度提升模 型推理能力和长程问题能力,基于RL的 Post-Training 将会成为下一个突破点。 ➢ 自回归模型在数学推理问题上很难进步的一点在于没有办法进行回答的自主修正,如果仅是依靠生成 式方法和
    10 积分 | 76 页 | 8.39 MB | 9 月前
    3
  • pdf文档 AI跃迁派:2025年DeepSeek零基础完全指南

    1 模型) ⚫ 多模态融合:能理解文字、图片、文件等多种信息(未来还将支持语音和视频) ⚫ 超长上下文:一口气读完 3-4 万字的长文档(64Ktoken 容量) 技术架构: ⚫ MLA 多头潜在注意力:像多线程处理信息,显存占用降低 50%,适合普通电脑运 行 ⚫ MoE 混合专家系统:遇到问题自动召唤“专业团队”,比如数学题找数学专家模 块,写诗找创意模块 粘贴 Excel 销售数据→输入“分析 Q4 各品类销售额占比” 2.追加“生成可视化代码(Pythonmatplotlib)” 效果:10 分钟完成原本需 1 天的数据分析报告 ②多 AI 联合作战 指令模板: “先让 DeepSeekR1 制定《智能手环市场调研方案》,再用 GPT-4 生成问卷文案,最后 用 Claude 整理数据图表” 效率提升:全流程时间缩短 1.上传历年工作文档/读书笔记/会议记录 2.输入“构建知识图谱,关联 2024-2025 年市场策略”→生成可交互的 3D 知识网络 ⚫ 企业智慧大脑: 销售数据+客服录音+生产日志多源融合→自动生成经营决策建议( ②流程自动化矩阵 ⚫ 智能工作流: 邮件接收→AI 提取关键信息→自动创建待办事项→生成执行方案→推送进度提醒 ⚫ 跨平台协作: Excel
    10 积分 | 21 页 | 1.01 MB | 9 月前
    3
  • pdf文档 英特尔-工业人工智能白皮书2025年版

    模块等代码,甚至优化现有代码,从而帮助开发者加 速代码生成,减少错误。 • 优化产品结构与应用模拟:通过形态识别技术,将 产品外形及特征转化为数据,辅助设计师不断优化 迭代。利用收集到数据构建数字孪生产品模型,模 拟产品的各种实际应用场景,如正常操作、极限性 能、潜在故障等,预测产品性能表现,进一步指导 设计改进。 1.2 工业 AI 的应用范畴 04 01 工业人工智能 (AI) 行业观察 Model),是指具有大量参数和复杂结构的机器学习模型,能够处 理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。大模型通常包括大语言模型 (LLM)、视觉 大模型 (CV)、多模态大模型等各种类型。 大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测,能够处 理更加复杂的任务和数据。 展开来讲,大模型技术有以下几项基本特征: 个方向,是目前应用探索最多的领域。工业大模型经过一年多的发展,目前 总体处于小规模商业应用落地阶段。 工业大模型凭借其卓越的理解、生成和泛化能力,通过与工业领域的深度融合,有望为工业领域带来 “基础模型 + 各类应用” 的新范式。因此,工业大模型的成功落地,离不开针对特定行业的丰富现场经验和深厚的行业 know-how 能力。 第四,多模态分析能力,由传统单一格式的工业数据 处理,转化为多格式数据综合转换分析。
    0 积分 | 82 页 | 5.13 MB | 9 月前
    3
  • ppt文档 浙江大学-DeepSeek模型优势:算力、成本角度解读2025

    GPU 给客户提供高质量模型服务 ■ 例子:营收小、整体亏钱 2025 年特朗普的“星际之门”为 OpenAl 筹 5000 亿美元 Al 基础设施 ! 国际人工智能企业 OpenAI 的商业模 式 ■ 国内人工智能商业模式 ( 循环以下四步 ) ■ 1, 国内融资 ( 亿美金 ) ■ 可行性分析:资金没问题,尤其优质生产力领域 2, 购买最新 GPU ■ 可行性分析:美国可以发禁令 12 月 2024 年 7 月 训练 Token 2 T 8.1 T 14.8 T 15T 模型规模 7B 、 67B 236B/ 激活 21B 671B/ 激活 37B 405B MoE 模 型 稠密 MoE 2+160 MoE 1+256 稠密 注意力技术 GQA MLA MLA N.A 上下文长度 4K 128K 128K 128K 训练成本 (GPU Hours) 300 concotenatel ](q 同 fopply RoPE Latent cO 0 OO00 1 ■ DeepSeek V3 模 型 参 数 ? 671B 参数 (GPT-3:175B 、 GPT-4:1.76T?) ■ 每个 token 激 活 3 7B 参数 (~5.5%), 降低计算 量 MoE: 1 共享专家
    10 积分 | 23 页 | 7.53 MB | 9 月前
    3
  • ppt文档 从智慧教育到智慧课堂:理论、规范与实践

    有效联接和利用学习 社群进行沟通和交流 提供支持 无缝切换 无缝切换 联接社群 系统集成 虚实融合 多终端访问 系统集成 遵循技术标准,跨级、跨 域教育服务平台之间实现 数据共享、系统集成 虚实融合 通过增强现实等技术 实现物理环境与虚拟 环境的无缝融合 多终端访问 支持任何常用终端设备无缝 连接到各种教育信息系统, 无缝获取学习资源与服务 联接社群 学习者的多个学习终 云学习环境 • 保证学习数据的永 不丢失,为学习分 析提供数据支持 存储学习过程 数据 28 泛在网 络 泛在网络是通信网、互联 网、物联网的高度协同和 融合,将实现跨网络、跨 行业、跨应用、异构多技 术的融合和协同。 29 泛在网 络 创 新 学习、生活与工作的连通 学校教育、家庭教育和社会教育的 连通; 手机、平板、 PC 、学习机、电视 等各种终端设备的连通。 三 方 连
    10 积分 | 74 页 | 10.39 MB | 9 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
山东东大大学山东大学DeepSeek应用部署模型赋能高校教学科研2025华为解决方案解决方案R1Kimi1.5及类推理推理模型开发解读报告AI跃迁基础完全指南英特特尔英特尔工业人工智能人工智能白皮皮书白皮书年版浙江浙江大学优势算力成本角度智慧教育课堂理论规范实践
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 - 2026 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩