从智慧教育到智慧课堂:理论、规范与实践智慧教育的内涵与特征 3 智慧战略引重视 • 2008 年 IBM 提 出智慧地球战略 智慧教 育 已 成 共 识 新加坡 2006 年iN2015 计划 智慧教育计划 提出 建立学习者为中 心的个性化学习 空间 建设国家范围的 教育基础设施 使新加坡成为全 球教育领域使用 信息技术的创新 中心 5 智慧教 育 已 成 韩国 " 智 慧 教 育 推 进 战 略 " 2011 年 收集、管理与分析, 为学习者提供独特 的学习体验,教学 制度优化 7 智慧教 育 智 慧 教 育 什么是智慧教育? 在信息化基础之上建构的信息时代的教育新秩序,是信 息时代的教育新形态、教育的“新常态”,是信息化元素充分 融入教育以后,在“时代催化剂”的作用下教育发生的“化学反 应”。 信息化 教育 时代催化剂 智慧教育” 智慧教育体系 智慧教师 智慧管理 智慧学习者及智慧学习 智慧学习者及智慧学习 智慧课程 智慧教学 智慧教育资源 智慧评价(教、学) 智慧服务 智慧教室 智慧校园 智慧平台 智慧教育方式 10 信息技术 与学科教 学深度融 合 全球教育 资源无缝 整合共享 无处不在 的开放、 按需学习 基于大数 据的科学 分析与评 价 绿色高效 的教育管 理 技 术 特 征 情景感知 无缝连接 可视化 按需推送10 积分 | 74 页 | 10.39 MB | 5 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告技术对比探讨 ➢ STaR-based Methods vs. RL-based Methods 强推理路径对比 (DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 和 Train-Time Scaling 提升模型的推理能力? ➢ 得益于纯大规模强化学习,DeepSeek-R1 具备强大推理能力与长文本思考能力,继开源来备受关注。 ➢ DeepSeek R1-Zero 和 R1的出现再次证明了强化学习的潜力所在: ➢ R1-Zero 从基础模型开始构建,完全依赖强化学习,而不使用人类专家标注的监督微调(SFT); ➢ 随着训练步骤增加,模型逐渐展现出长文本推理及长链推理能力; DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 DeepSeek-v3-Base (671B) DeepSeek-R1-Zero 基于规则的奖励 Rule-Based Reward 推理为中心的大规模强化学习 Large-Scale Reasoning-Oriented RL 大规模推理为中心的强化学习,提升模型数学代码能力 RL驱动下自然涌现长文本推理能力10 积分 | 76 页 | 8.39 MB | 5 月前3
DeepSeek大模型赋能高校教学和科研202511 年专注于大数据教学 团队特点: 眼光前瞻、 紧跟技术、 创新实干、 执行力 强 影响力高: 多项指标在国内高校大数据教学领域领 先 • 教材数量 • 教材占有率 • MOOC 课程学习人数 • 师资培养 • 教学研讨会 • 教学网站访问量 • 在线讲座观看人数 • …… 团队联系方式: ziyulin@xmu.edu.cn 厦门大学大数据教学团队 1. 人工智能发展简史 大模型:人工智能的前 沿 3.5 大模型原理 3.6 大模型产品 3.7 大模型应用领 域 厦门大学大数据教学团队作品 大模型通常指的是大规模的人工智能模型 ,是一种基于深度学习技术 ,具 有 海量参数、强大的学习能力和泛化能力 ,能够处理和生成多种类型数据的 人 工智能模型。 通常说的大模型的“大”的特点体现在: 2020 年 , OpenAI 公司推出了 GPT-3 ,模型参数规模达到了 训练数据量大 计算资源需求高 参数数量庞大 大模型的设计和训练旨在提供更强大、 更准确的模型性能 , 以应对更复杂、 更庞大的数据集或任务。 大模型通常能够学习 到 更细微的模式和规律 ,具有更强的泛化能力和表达能力 学习能力强 大模型可以从大量的数据中学习, 并利用学到的知识和模式来提供 更精准的答案和预测 。这使得它 们在解决复杂问题和应对新的 场 景时表现更加出色10 积分 | 123 页 | 15.88 MB | 5 月前3
英特尔-工业人工智能白皮书2025年版............69 工业人工智能 (AI) 行业观察 01 02 01 工业人工智能 (AI) 行业观察 工业 AI,是 AI 技术在工业领域的应用,它通过机器学习、深度学习、计算机视觉等先进的计算智能方法,实现对工业生产 过程的优化和智能化,最终帮助企业提高生产效率、降低成本、提升产品质量,实现数字化转型。 2023 年 12 月,由信通院牵头、多家单位联合编 技术在工业领域的应用,已经贯穿于产品设计、生产、管理、服务等众多环节,它主要通过各种方式收集海量数据,然后 利用机器学习和统计模型对数据进行分析,并依据数据分析结果辅助决策,帮助企业优化资源配置,提质增效,节省成本。 具体来看,AI 技术在工业领域的应用主要在以下几大方面: 研发与规划 • 需求分析与预测:基于历史数据和机器学习算法,构 建预测模型,通过分析大量用户数据和市场趋势,洞 察市场需求,预测未来趋势,精准定位产品的设计与 立预测模型,预测每项任务的完成时间,并评估整个 项目的完成时间,有助于提前发现潜在延迟风险,让 团队合理分配时间和其他资源,保证项目按时或提前 完成。 • 自动化代码编写与优化:AI 编程助手利用深度学习 算法和大量代码数据训练模型,通过分析代码的结构 和模式,并根据开发者的需求,自动生成函数、类、 模块等代码,甚至优化现有代码,从而帮助开发者加 速代码生成,减少错误。 • 优化产品结构与应用模拟:通过形态识别技术,将0 积分 | 82 页 | 5.13 MB | 5 月前3
山东大学:DeepSeek 应用与部署PPO : Proximal Policy Optimization GRPO : Group Relative Policy Optimization 强化学习让智能体( Agent )在环境 ( Environment )中不断尝试、学习 ,并优化自己 的策略( Policy ) ,最终获得最大化的奖励 ( Reward )。 DeepSeek : 技术创新—推理模型 领域问题建模与复杂推理 ,包括领域自适应学习(建立医、 教育、 金融垂直应用于 模型) 、 因果推理引擎(建立因果图模型) 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 Studio 、 Chatbox 等选择 API 接入。 • 秘塔 AI 搜索: 接入满血版 DeepSeek - R1 推理模型 , 无广告且搜索结果直达。 以学习 JDK21 新特性 为 例 , 能详细给出学习计划 ,包括快速预览、 深入学习核心特性、 实战与总结等阶段。 • 硅基流动: 注册即送 2000 万 Tokens ,提供多个基于 DeepSeek - R1 蒸馏训练的模型 ,如10 积分 | 79 页 | 6.52 MB | 5 月前3
AI跃迁派:2025年DeepSeek零基础完全指南1.颠覆性定义:人人都能用的认知引擎 DeepSeek(深度求索)是中国首个全栈开源的大语言模型,由杭州深度求索人工智能 公司研发,定位为“认知智能引擎”。简单来说,它是一个能像人类一样思考、学习和解 决问题的超级 AI 工具。 核心能力: ⚫ 复杂推理:像学霸解数学题一样处理逻辑难题(R1 模型) ⚫ 多模态融合:能理解文字、图片、文件等多种信息(未来还将支持语音和视频) 多头潜在注意力:像多线程处理信息,显存占用降低 50%,适合普通电脑运 行 ⚫ MoE 混合专家系统:遇到问题自动召唤“专业团队”,比如数学题找数学专家模 块,写诗找创意模块 ⚫ 强化学习驱动:通过“试错+奖励”机制自我进化,类似游戏 AI 自学通关 2.划时代意义:中国 AI 的破局之战 DeepSeek 的诞生不仅是技术突破,更是国家战略级的里程碑: 成本革命: 通过技术普惠,正在重塑个人与组织的生产力模式,以下是三大用户群体的 典型应用场景: ①学生党:从题海战术到精准学习 ⚫ 论文润色:上传论文草稿→输入“优化学术表达,确保符合 APA 格式”→10 分钟完 成专业级修改 ⚫ 知识点图谱:输入“用思维导图整理高中生物遗传学核心概念”→生成可打印的学习 框架 ⚫ 解题思路:拍摄数学题照片→R1 模式自动分步解析,错误点用红框标注 ②职场人:效率提升10 积分 | 21 页 | 1.01 MB | 5 月前3
华为昇腾DeepSeek解决方案模型算法: GPT 、 LLaMA AI 框架: PY 、 TF 异构计算架构: CUDA 互联技术: NV Link AI 芯片: NV 、 AMD • DS 对强化学习的创新使用, 可以让大模型便捷的获 得 通用性 + 专用性, 可以满足各应用场景需求 • DS 对通过从模型结构到训推全流程的极致工程优化, 大幅提升 AI 的计算效率, 提升模型落地经济性 计算量减少 70% DeepSeek 通过从模型结构到训推全流程的优化,带来大模型新 范式 DeepSeekV3/R1 ,大幅提升从训练到推理的计算效率,降低模型创新及应用落地的门槛 降低学习复杂度 简化强化学习流程 降低后训练复杂度 推理优化 单次推理效率倍级提升 一次预测多个 token 推理倍级提升 FP16/BF16 1 前 1 后单流水 需要裁判模型评估 1 次 1token FP8 混合精度 双向流水并行 新老策略组队评估 1 次多 Token 预 测 MLA 低秩压缩减少缓存 DeepSeekMoE 更稀疏 256 选 8+1 训练精度 PP 并行算法 强化学习 Attention MOE Token 预测 业界 LLM 大模 型 核心 收益效果 Huawei Proprietary - Restricted Distribution DeepSeek0 积分 | 32 页 | 2.52 MB | 5 月前3
共 7 条
- 1
