英特尔-工业人工智能白皮书2025年版模块等代码,甚至优化现有代码,从而帮助开发者加 速代码生成,减少错误。 • 优化产品结构与应用模拟:通过形态识别技术,将 产品外形及特征转化为数据,辅助设计师不断优化 迭代。利用收集到数据构建数字孪生产品模型,模 拟产品的各种实际应用场景,如正常操作、极限性 能、潜在故障等,预测产品性能表现,进一步指导 设计改进。 1.2 工业 AI 的应用范畴 04 01 工业人工智能 (AI) 行业观察 生产过程管控 模型具备更智能化分析和决策能力的基础。而往往很多时候来 自工业现场的数据量非常有限甚至极少。其次是数据质量问题,即数据的清洁性,并非所有来自工业现场的数据都是 有用的,需要对数据进行清洁。如何从实际应用场景中采集或生成丰富且有价值的可用数据,是 AI 及工业大模型成功 落地应用的挑战之一。再次是数据的标注和处理,即便有了足够的数据,对这些数据进行标注和处理也在难度和工作 量方面面临极大挑战。最后是数据安全和隐私问题,数据是 这种训练过程涉及海量的数据运算,对 CPU、GPU 或 NPU 等加速计算硬件提出了极高的要求。 第四,模型应用准确性问题。 工业大模型在实际应用中的准确度尚不尽人意。目前 大模型比较擅长知识问答、文档生成、数据分析等场 景应用,但在面向实际工程的代码生成能力仍有很大 提升空间,尤其在实用算法、科学计算和数据结构等 领域能力偏弱。另外,针对缺陷样本极少的工业质检 应用场景,工业大模型基于真实缺陷图生成仿真缺陷0 积分 | 82 页 | 5.13 MB | 7 月前3
山东大学:DeepSeek 应用与部署token 。 • 但因为不同模型的分词不同 , 所以换算比例也存在差异 , 每一次实际处 理 token 数量以模型返回为准 ,您可以从返回结果的 usage 中查看。 阿里云部署 Deepseek 以 DeepSeek-R1 满血版为例进行演示 ,通过百炼模型服务进行 DeepSeek 开源模型调用 ,可以 根 据实际需求选择其他参数规模的 DeepSeek 模型。百炼平台的 API 提供标准化接口10 积分 | 79 页 | 6.52 MB | 7 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告定的模式所束缚。 12 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero的关键启示 ➢ 跳过SFT阶段,直接运用纯强化学习拓展推理能力边界实际上也带来了几个很重要的启示: ➢ 需要足够强的基座模型:基座模型 (DeepSeek-V3 Base) 超过了某个质量和能力阈值 (671B 在14.8T 高质量Token上训练)(基座模型知识帮助突破推理上界,也有一些 它反映了模型的真实内部计算过程。模 型可能学会输出符合人类期望的思维链,但实际推理过程可能与其展示的 CoT 不同。 ➢ 当模型具备长期目标意识(Instrumental Reasoning)时,它可能会构造看似合理但实际上误导 性的 CoT,以隐藏其真正的意图。此外,CoT 仅是文本输出的一部分,并不代表模型的实际内 部推理过程,因此不能确保其真实透明。 ➢ 为了防止 CoT 变成伪装工具,需要结合AI-Driven10 积分 | 76 页 | 8.39 MB | 7 月前3
DeepSeek大模型赋能高校教学和科研2025误的 理论或数据。 其产生原因主要包括: 模型训练数据存在偏差、 不完整或错误 , 导致在学习过程中引入了不准 确 的信息; 模型基于概率分布生成内容 , 在某 些情 况下会选择一些看似合理但实际错误的路 径。 大 模型幻觉会影响信息的准确性和可靠性 , 在信息 传播、 学术研究等领域可能带来不良影响。 因此, 在使用大模型时 , 需要对其输出内容进 行仔细验 证和甄别。 3.6.3 主流大模型“幻觉”评测10 积分 | 123 页 | 15.88 MB | 7 月前3
共 4 条
- 1
