AI跃迁派:2025年DeepSeek零基础完全指南技术“飞入寻常百姓家”: 1.开源开放:代码和模型权重全部公开,学生也能用个人电脑跑 AI 2.知识蒸馏:把 70B 参数大模型压缩到 1.5B,手机都能运行专业级 AI 5.国际影响:技术出海的东方智慧 ⚫ 在东南亚、中东等地区,DeepSeek 成为数智主权建设工具,帮助发展中国家摆脱 对西方技术的依赖 ⚫ 开源策略吸引全球 20 万开发者,形成中美双极化的 AI 2:深度思考(R1)——决策智囊团 技术突破: ⚫ 思维链可视化:像老师写板书一样展示推理步骤(如解方程时先分解条件再推 导) ⚫ 反事实推演:模拟“如果特斯拉降价 10%”对产业链的 6 级影响 实战场景: ⚫ 医疗诊断:输入症状自动关联相似病例,生成检查建议(需医生复核) ⚫ 投资分析:对比财报数据→预测企业风险→生成可视化报告 ⚫ 学术研究:自动标注论文参考文献,检测实验数据矛盾点 邮件接收→AI 提取关键信息→自动创建待办事项→生成执行方案→推送进度提醒 ⚫ 跨平台协作: Excel 表格+微信聊天记录+邮件内容→自动整合为 CRM 客户档案 3.社会影响:重新定义工作边界 DeepSeek 的普及正在引发结构性变革: ①职业重构 ⚫ 新兴岗位:AI 训练师(年薪 50 万+)、智能流程设计师、数字资产管理员 ⚫ 技能升级:提示词工程师认证考试报考人数突破百万10 积分 | 21 页 | 1.01 MB | 6 月前3
英特尔-工业人工智能白皮书2025年版标之一,它不仅关系到车辆的美观性,更事关车辆的防腐性、耐久性 等问题。漆面喷涂环节工艺繁多复杂,易出现颗粒、缩孔、焊渣、脏污等各类缺陷,进而影响整车外观甚至漆面的 耐久性。 传统的人工漆面缺陷检测方法,受检测人员自身状态及长时间工作易疲劳等因素的影响,无法精确检出各类缺陷, 很难满足现代汽车生产需求。 在 AI 算法赋能下的 3D 成像技术,与机器人手臂协同作业,能够在线采集整车漆面数据进行并行计算,实现车身 。AI 技术可以在此阶段通过强化学习等方法,自动学习最优 的布局策略,实现快速而高效的布局布线,同时优化信号完整性、功耗和热管理等关键指标。 半导体晶圆制造过程极为复杂、精密,任何微小缺陷都可能影响芯片性能。晶圆中常见的缺陷包括表面的划痕、裂 纹、污染物、凸起,表面翘曲,切割瑕疵、晶体缺陷等。这些缺陷大多细微不易察觉,通常需要微米级甚至更小的 检测精度。人工检测效率低下,易出错,无法满足大 第三,实时响应问题。 工厂在线检测、智能驾驶等应用,需要系统实时做出 响应的情况下,需要模型能够实时处理输入数据并快 速做出响应。将场景应用端的数据再传输到云端处 理,庞大的数据量会造成带宽拥挤,影响处理的时效 性。采用边缘计算方案来缓解时效性问题,但是这对 边缘端计算硬件的实时处理能力提出了挑战。 第二,算力问题。 无论是训练 AI 算法还是各种工业大模型,都需要强 大的算力支撑。工业大模型动辄参数规模都在十亿、0 积分 | 82 页 | 5.13 MB | 5 月前3
DeepSeek大模型赋能高校教学和科研2025核心成员全部 46 周岁以下 结构合理: 教学型、 科研型、 实验工程师 专注专业: 从 2013 年至今 , 11 年专注于大数据教学 团队特点: 眼光前瞻、 紧跟技术、 创新实干、 执行力 强 影响力高: 多项指标在国内高校大数据教学领域领 先 • 教材数量 • 教材占有率 • MOOC 课程学习人数 • 师资培养 • 教学研讨会 • 教学网站访问量 • 在线讲座观看人数 ,发布了名为 Sora 的 文本 生成视频大模型 ,只需输入文本就能自动生成视频。 这一技术的诞生, 不仅标志着人工智能在视频生成领域的重大突破 ,更引发了关于人工智 能发展对人类未来影响的深刻思考。 随着 Sora 的发布 ,人工智能似乎正 式踏入了通用人工智能( AGI : Artificial General Intelligence ) 的时 代。 AGI 是 不完整或错误 , 导致在学习过程中引入了不准 确 的信息; 模型基于概率分布生成内容 , 在某 些情 况下会选择一些看似合理但实际错误的路 径。 大 模型幻觉会影响信息的准确性和可靠性 , 在信息 传播、 学术研究等领域可能带来不良影响。 因此, 在使用大模型时 , 需要对其输出内容进 行仔细验 证和甄别。 3.6.3 主流大模型“幻觉”评测 3.7 大模型的应用领域 厦门大学大数据教学团队作品10 积分 | 123 页 | 15.88 MB | 6 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告Long-COT 训练中表现更佳,优于较小规模的模型(如 7B)在保持正确推理路径和处理复杂任务的能力。 ➢ 任务与语言之间的正迁移:Long-COT 训练不仅能提升数学任务的性能,还能对其他领域和语言产生正向影响,展现了其 广泛的适用性。此外,该方法具有良好的泛化性和鲁棒性,在通用基础任务和对齐评估中取得了相当或更优的表现。 ➢ 强化学习的规模化提升了效率:离线强化学习算法(DPO)和在线强化学习算法(PPO)均能有效增强模型性能。 Token Generation Space 更大,而不是像象棋一样, Search Space 是 relatively well-defined,容易陷入局部最优 ➢ Value Model 直接影响了搜索方向,而训练一个好的Value Model 比较困难 ➢ 一个相对成功的典范是 rStar-Math [1], 通过小模型达到OpenAI o1数学任务相当的水平 ➢ 一个作为策略模型Policy \ Agent 等模型下游和赋能应用兴起,确保模型AI系统准确应对不确定性,考虑物理规律下的人 类价值观对齐至关重要 ➢ 在复杂动态环境中不仅要短期安全,还要确保长期行为的安全性,例如对操作环境造成影响。 ➢ 通过形式化验证和RL,提升AI系统的可靠性与处理复杂推理问题的能力。通过构建形式化数学数据库, 建立高度严谨的推理模型。 个体安全 ≠ 群体安全, 行为安全 ≠ 价值安全 安全复杂性和维度超出传统方法10 积分 | 76 页 | 8.39 MB | 6 月前3
华为昇腾DeepSeek解决方案推理阶段,理论上可以将 KV Cache 降低 1~2 个数量级,大幅减少 HBM 存取和通信的开销。 2. 对昇腾更亲和,大幅降低对 HBM 依赖,提升推理 Decode 性能。 MLA 架构 昇腾 影响 具体实现 实验结果 ① 模型结构 • 每个 MTP 模块共享嵌入层和输出头 • 每个 MTP 模块独占一个 Transformer Block 和一个投影矩阵 • 多个 MTP0 积分 | 32 页 | 2.52 MB | 5 月前3
共 5 条
- 1
