积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(4)技术工具(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(3)PPT文档 PPT(1)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 4 个.
  • 全部
  • 人工智能
  • 技术工具
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 华为昇腾DeepSeek解决方案

    级框盒、框框组网,适用于大规模及超大规模集群 3 、 AI 任 务信 息 任务、通信域 … 1 、控制器获取网络拓扑, 下 发路径 信息 2 、 AI 任 务调 度 以全部通信关系和拓扑信息作为输入 通过算法计算出最优结果,实现 AI 参数面全网负载均衡 算网协同 • 网络级负载均衡:独家 NSLB 算法, 算网协 同 调度,多任务节点非连续组网情况下,通信 带宽 提升 20% 、模型性能提升 7% 中常见模型的 mask 上 三角区域均接近于 0 自适应选择性重计算、内存碎片优化、 … 模型训练:应用使能软件加持, MFU 领先、线性度持平 NV 模型训练最优 = 单机执行最优 + 集群并行最优 + 中断时间最短 软件层分布式并行 充分调度算力资源 提供分布式加速库,内置主流 加速算法,满足各类模型加速 场景 Ascend C 编程语言 + Runtime 空闲 超大集群线性度 90%+ L2 层 下发路 径 L1 层 分布式并行 + 算网协同,集群并行最优 模型算力利用率( MFU ) 模型通信与计算优化,单机执行最优 计算 通信 计算 1 计算 2 计算 3 计算 4 通信 1 通信 2 通信 3
    0 积分 | 32 页 | 2.52 MB | 5 月前
    3
  • pdf文档 英特尔-工业人工智能白皮书2025年版

    和大模型的应用,已经渗透到工业生产的产品设计、企业流程管理规划、智能化生产、设备预 测性维护、供应链优化、创新服务、绿色制造、智能客服等众多环节,它通过处理和分析海量工业数 据,帮助企业在上述各个环节中做出最优的智能化决策,从而在多个环节全方位实现提质、增效、降 本,增强竞争力。 在日趋激烈的工业市场竞争中,寻求部署新技术来提升综合竞争力,是企业的生存之道。而引领工业 革命浪潮的 AI 技术和大模型 习模型预测 不同电路设计的性能指标(如功耗、速度、面积等),从而快速筛选出最优设计方案。这种方法大大减少了人工试 错的时间,加速了设计迭代过程。在布局布线阶段,优化布局布线是集成电路设计中最为耗时的步骤之一,涉及到 芯片上数百万甚至数十亿个元器件的物理位置和连接。AI 技术可以在此阶段通过强化学习等方法,自动学习最优 的布局策略,实现快速而高效的布局布线,同时优化信号完整性、功耗和热管理等关键指标。 特尔® Geti™ 平台提供了一个方便的机 制,在上传多媒体数据(图像或视频)时进行标注。上传后,英特尔® Geti™ 平台会存储所有数据集。 2. 主动集 — 这个功能会自动选择多媒体数据进行最优化的训练会话。 3. 标注 — 这是您开始教机器如何思考的阶段。英特尔® Geti™ 平台提供了一套工具来促进标注工作。UI 中可用的 标注工具会根据您选择的项目类型而有所不同。由于这是您将花费大部分时间的地方,英特尔®
    0 积分 | 82 页 | 5.13 MB | 5 月前
    3
  • pdf文档 AI跃迁派:2025年DeepSeek零基础完全指南

    DeepSeek 预示的不仅是工具革新,更是认知革命的序幕: ①能力坐标系重构 核心能力: ⚫ 跨域整合(将 AI 与行业 know-how 结合) ⚫ 价值判断(在 AI 建议中做出最优决策) ⚫ 情感智慧(弥补 AI 的情感计算短板) ②组织形态进化 ⚫ DAO(去中心化自治组织): 通过智能合约+AI 协作平台,万人团队实现零管理成本运作 ⚫ 人机混合团队:
    10 积分 | 21 页 | 1.01 MB | 6 月前
    3
  • pdf文档 2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告

    MCTS 可能会有以下的问题: ➢ Token Generation Space 更大,而不是像象棋一样, Search Space 是 relatively well-defined,容易陷入局部最优 ➢ Value Model 直接影响了搜索方向,而训练一个好的Value Model 比较困难 ➢ 一个相对成功的典范是 rStar-Math [1], 通过小模型达到OpenAI o1数学任务相当的水平
    10 积分 | 76 页 | 8.39 MB | 6 月前
    3
共 4 条
  • 1
前往
页
相关搜索词
华为DeepSeek解决方案解决方案英特特尔英特尔工业人工智能人工智能白皮皮书白皮书2025年版AI跃迁基础完全指南R1Kimi1.5及类推理模型推理模型开发解读报告
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩