智慧农业科技引入DeepSeek大模型微调方案(190页 WORD).......................................................................................79 4.2.2 模型微调策略................................................................................................. .86 5. 微调方案实施........................................................................................................................................................................89 5.1 微调目标设定.... ...........................................................................................94 5.2 微调方法选择...............................................................................................0 积分 | 196 页 | 594.27 KB | 21 天前3
智能金融:AI驱动的金融变革(45页 PPT)意距离的依赖关系。 并行计算能力强: Transformer 架构支持并行计 算, 训练速度更快。 • 缺点:资源消耗大 上下文学习、指令微调、 扩展规律 (GPT3 、 GPT4…) 自然语言处理模型的演进 预训练语言模 型( PLM ) “ 预训练 - 微调” 学习范式 ( BERT、 GPT) 大语言模型 ( LLM ) 注意力 Attention 自注意力机制:使序列中的每个单词都能 Richard Sutton (强化学习之父 ,阿尔 伯塔大学 教授, DeepMind 科学家) 折扣因子 监督微调 强化学习 图源自《 ReFT: Reasoning with Reinforced Fine-Tuning 》 DeepSeek-R1 :监督微调 + 强化学习训练 高探索自由度 = 推理能力自我觉醒 (规则奖励 + 奖励模型) 纯强化学习训练 多阶段增强训练 R1-Zero 生成的 长思维链数据 综合性能 更强 R1 蒸馏 版 1.5B~32B 对 V3 模 型 监督 微调 混合数据 监督微调 60 万条 推理数据 模型蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型高效模型(学生模型)的模型压缩技术 ,其 核心目标是在保持模型性能的同时 ,显著降低模型的计算复杂度和存储需求20 积分 | 45 页 | 4.10 MB | 2 天前3
政务大模型通用技术与应用支撑能力要求........ 1 3.4 大模型服务 large-scale model service ........................................... 2 3.5 微调 fine-tuning ............................................................... 2 3.6 提示词 prompt .... 1—2025,3.2] 3.5 微调 fine-tuning 为提升机器学习模型预测准确性,使用专门领域数据在大模型上继续训练的过程。 注1:专门领域数据一般是特定场景的生产数据或合成数据。 注2:常用的微调方法包括提示词微调、全参微调、参数高效微调等。 [来源:GB/T41867—2022,3.2. 31,有修改] 3.6 提示词 prompt 提示语 使用大模型进行微调或下游任务处理时,插入到输入样本中的指令或信息对象。 b) 应支持多种数据类型,支持excel、txt、json等多种格式数据导入,以及支持结构化数据、非 结构化文本、音视频等多模态数据接入,提供数据去重工具。 6.2.1.2 数据标注 a) 应支持微调语料标注能力,即对已有大规模通用语料库进行精细化标注,以满足特定任务或领 域的需求。标注结果应具备一致性和可靠性,遵循相应的标注规范; b) 应支持对齐语料标注能力,具备将不同来源、不同结构的文本进行整合和对齐的能力,形成一5 积分 | 23 页 | 500.64 KB | 3 天前3
大模型技术深度赋能保险行业白皮书151页(2024)· · 107 企微运维机器人· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 108 华农保险大模型微调效果· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 111 众安AIGC中台-众有灵犀· · · · · · · · · · /开源数据集、企业自有数据以及AI 合成数据。大模型训练和微调所需数据量快速增长,真实世界数据将在数年内被用尽。研 究机构Epoch估计,机器学习可能会在2026年前耗尽所有“高质量语言数据”。据Gartner 预测,2024年用于训练AI的数据中有60%将是合成数据。以Meta今年7月发布的 LLaMA3.1模型为例,监督微调环节的数据里有相当比例是合成数据,使用合成数据确实 带来了模型效果的提升。 带来了模型效果的提升。 (1)合成数据成有力补充 高质量的真实数据已逐渐无法满足大模型训练与精细微调的需要,这促使合成数据 作为真实数据的重要补充,在人工智能领域扮演着日益关键的角色。合成数据作为算法、 生成模型及模拟技术的产物,能够模仿现实世界数据的特征与模式,为大模型的训练与优 化提供丰富的数据资源。 以AlphaGeometry项目为例,该项目通过生成高达一亿个精准合成的数据点,为解决20 积分 | 151 页 | 15.03 MB | 2 天前3
2025年智能金融:AI+驱动的金融变革报告-浙江大学(郑小林)预测模型(N-gram) • 优点:可解释、计算速 度快 • 缺点:从前向后单向计 算;单纯基于统计频次、 缺少对上下文的泛化; 随着n的增大,参数空 间呈指数增长 “预训练-微调” 学习范式 (BERT、GPT) 上下文学习、指令微调、 扩展规律 (GPT3、GPT4…) 基于Transformer架构的语言模型 • 优点: ✓ 长距离依赖处理能力强:自注意力机制能捕捉任 意距离的依赖关系。 浙江大学人工智能教 浙 DeepSeek-R1:监督微调+强化学习训练 DeepSeek-R1-Zero (强推理模型) 推理导向强化学习 (准确率奖励+格式奖励) 纯强化学习训练 低可控:生成文本可 读性差、语言混乱 高探索自由度 => 推理能力自我觉醒 (更长的思维链、更深层次的 推理路径) DeepSeek-V3 (基础模型) 监督微调 强化学习 图源自《ReFT: Reasoning 更强 在探索自 由度、学 习效率、 行为可控 性 找到动 态平衡 混合数据 监督微调 面向全场景的强化学习 (规则奖励+奖励模型) DeepSeek-R1 (强推理模型) 671B 第一阶段训练:增强推理能力,生成高质量推理数据 第二阶段训练:增强通用能力,避免灾难性遗忘 对V3模型 监督微调 推理导向强化学习 (准确率奖励+可读性奖励) R1-Zero生成的 长思维链数据10 积分 | 45 页 | 7.21 MB | 4 小时前3
2025年智能之光:⼈机协作的经济管理研究新时代报告-北京大学中国经济研究中心均指代大语言模型。 2 人工智能时代的社会科学家 5 对于需要大规模文本分析的应用,则需要通过 API 访问;如果有进一步的保密需求,则需要考虑本地部署。 随着相关计算框架的成熟,本地部署大模型、微调大模型已经不是高科技公司的专利,而是每一个社会科学研 究者都能运用的工具。 在介绍完这些技术基础之后,我们分别介绍大模型在研究全过程中的应用。我们认为,人工智能大模型在 研究过程中将会扮演四种 Transformer 模型建构,并发展了 “预训练-微调”范式。所谓“预训练——微调”范式,就是指先在大量一般的文本上对语言模型进行训练,然 后在进行具体任务时,再利用少量数据进行微调。例如,在金融文本情绪分析当中,可以首先利用大量网络文 本数据,训练模型对于语言的一般理解;再利用少量领域数据(如 1000 条标注后的金融新闻标题)对模型参 数进行微调(Fine-tune)。在经济金融研究中,可以利用事先训练好的 利用事先训练好的 BERT 模型,在具体应用中进行微调, 实现对特定任务预测性能的改进。例如Siano (2025) 利用新闻公告文本作为自变量、公告后收益数据作为因变 量,微调了 BERT 模型。Huang et al. (2023) 则进一步针对金融和会计领域训练了 FinBERT 模型。 2020 年,Google 进一步推出了 T5 模型。这一模型的关键意义,在于通过“指令 + 数据”的形式实现了0 积分 | 62 页 | 2.45 MB | 3 天前3
金融银行业务接入DeepSeek AI大模型智能体建设方案(304页 WORD).......................................................................................61 4.2.1 模型微调模块................................................................................63 4.2.2 业务逻辑集成模块 ..................................87 6. 模型微调与优化...............................................................................................89 6.1 领域适配微调........................................... .....93 6.1.1 金融术语与业务规则注入............................................................95 6.1.2 场景化微调(如信贷审批、投资建议).....................................97 6.2 性能优化策略....................................10 积分 | 313 页 | 3.03 MB | 2 天前3
人工智能赋能医院智慧实验室的建设方案(50页 PPT)问问同检”应用方案的选择 当前常见的大模型应用方案主要包括大模型直答、大模型微调和 RAG ( 检索增强生成 ) 。 大模型直答虽成本低,但幻觉现象严重,缺乏领域知识与实时信息,且可溯源性较差。微调方案通过 优化模型获取领域知识,减少部分幻觉问题,但仍无法动态更新数据,且训练成本较高。 大模型 应用方案 大模型直答 问题 LLM 回答 问题 大模型微调 LLM + 领域知识 回答 RAG( 检索增强生成 问题 + 检索知识 LLM 回答 大模型直答 大模型微调 RAG ( 检索增强生成 ) 外在幻觉 多 中 少 领域知识 无 有 有 实时信息 无 无 有 可溯源 无 无 有 成本 低 高 低 RAG 方案则通过检索外部知识库,将外部知识作 为 生成内容的基础,从而大幅降低幻觉现象的发生。与仅 依赖模型记忆的直答和微调方案不同, RAG 方案具备 动态接入外部知识库的能力,在应对领域性问题和实时 【核心机制】基于岗位需求与人力资源的 " 动态平衡法 则 " 临床资源精准匹配 医疗质量安全强化 人员发展需求适配 【系统价值】通过人工智能持续优化,实现三大核心目标: 构建排班决策智能数据中枢、自动排班、人工微调 【智能排班】 NEXT- 基于大语言模型的质量指标总结 质量指标总结 NEXT- 基于大语言模型的员工考核系统 未经专业训练的大语言模型 AI 技术在检验医学中落地的挑 战 通用大模型(如30 积分 | 50 页 | 31.76 MB | 2 天前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD).......................................................................................96 6.1.2 模型微调与迭代优化.............................................................................................. 智能体方案 异常检测覆盖率 预设规则覆盖 65%场 景 机器学习识别 92%场景 工作底稿生成效率 4 小时/份 20 分钟/份(自动校验) 在技术实现路径上,我们采用分层架构设计:底层通过微调后 的 DeepSeek 模型处理非结构化文档,中间层构建审计知识图谱实 现条款关联,应用层则部署风险预警、抽样推荐等具体功能模块。 某试点项目数据显示,该方案使应收账款函证程序的耗时缩短 57%,同时将异常交易检出率提升 40%;其次,风险预测模块通过分析 历史审计案例库,可自动生成高风险科目预警清单,在试点项目中 成功识别出 87%的关联方交易异常;最后,其持续学习机制允许接 入会计师事务所的私有知识库,例如某四大事务所通过微调模型使 其掌握了该所特有的工作底稿编码规则。 审计场景关键能力对照表 | 功能模块 | 技术实现方案 | 审计价 值指标 | |—————–|—————————————|10 积分 | 212 页 | 1.52 MB | 2 天前3
保险行业理赔业务基于DeepSeek AI大模型应用设计方案(281页 WORD)..94 6.2 模型微调策略............................................................................................................................................................97 6.2.1 领域适应微调............ 上下文理解模块:基于 64 层 Transformer 解码器堆叠,每层 配备 128 头自注意力机制,支持最长 8k token 的上下文窗 口,足以覆盖保险条款全文 任务适配层:通过 LoRA 微调技术实现预训练模型向理赔场景 的快速迁移,仅需更新 0.1%参数即可适配核保规则变更 在架构设计上,模型采用动态计算路径优化技术。对于简单理 赔案件(如小额医疗险),模型自动激活浅层网络分支,推理延迟 85%案件的自动通过率。 模型针对保险行业特别优化的训练体系包含: - 领域自适应预训练:在 1200GB 保险专业语料上持续训练 - 对抗样本训练:包含 8 类常见欺诈模式的对抗数据集 - 条款对齐微调:使用对比学习技术确保输出与保险条款的严格对 应 实时服务能力通过以下技术实现保障: | 指标 | 性能参数 | 行业基准 | |———————|——————–|—————-|20 积分 | 295 页 | 1.87 MB | 2 天前3
共 131 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14
