CAICT算力:2025综合算力指数报告支撑数据处理与计 算,存力保障数据的高效存储与调用,运力保障数据的跨域传输, 模型能力则深度释放算力在各场景的应用效能。如何更科学的评估 我国综合算力发展现状,全面把握区域产业短板与优势,成为推动 我国数字经济高质量发展的新命题。 我国正处于数字经济加速跑的关键期。近年来,我国在算力领 域取得了显著进展。一是算力结构不断优化,技术创新成果频出; 二是存储规模与性能实现结构性突破,为海量数据的高效处理提供 我国算力产业发展已取得一定进展,但产业数字化转型进程仍 面临诸多挑战:区域间算力发展水平差距较大,综合算力协同发展 潜力尚待充分挖掘,亟需通过深化一体化算力网建设,强化统筹协 同与动态优化能力;全面提升算力供给质效,加速推动结构的迭代 升级;夯实存力运力底座,促进“算存网”协同演进;构建绿色低碳 体系,加速基础设施绿色升级;深度开展融合创新实践,助力产业 生态繁荣发展。 《2025 综合算力指数》全面呈现了我国综合算力发展现状,挖 .................... 36 (一)深化一体化算力网,强化统筹协同与动态优化.................................. 36 (二)提升算力供给质效,推动结构迭代升级.............................................. 37 (三)夯实存力运力底座,促进“算存网”协同演进...................20 积分 | 54 页 | 4.38 MB | 2 天前3
算力与场景双驱动,智能软件研发进入“平台 服务”融合新阶段 头豹词条报告系列制、数据采集与分析、故障预测及自我 修复等功能。嵌入式智能软件广泛应用于物联网(IoT)设备、智能家居、工业自动化、汽车电子以及医疗仪器等领域,能够增强产品的功 能性和用户体验,支持实时决策,并推动各行业向更加智能、高效的方向发展。 新兴技术软件是指那些基于最新科技发展,旨在革新传统工作方式、提升效率和用户体验的软件解决方案。这类软件常常融合了人工智能 (AI)、机器学习、大数据分析、云计 摘要 智能软件研发行业专注于开发和应用AI技术,提供智能化解决方案以提升业务效率、优化决策和增强用户体验。行业特征包括技术依赖性强、产品迭代周期短及多样化与跨 领域应用。中国在此领域展现出强劲实力,推动行业持续发展,市场规模不断扩大。未来,智能硬件出货量的增加将带动智能软件需求增长,智能家居和智能汽车等领域的 发展为智能软件研发行业提供了丰富的市场机遇,预计市场规模将持续扩张。 行业定义 行业分类 1963年,IBM宣布将软件与硬件实行分离定价,此举被视为软件产业迈向产业化的起始点。 1968年,美国计算机科学家在NATO的软 件工程会议上,首次明确提出了软件工程的概念。 智能软件研发行业的兴起推动了软件产业的独立发展、技术创新与产业升级,并广泛拓展了应用领域,满足了多样化的市场需求。 启动期 1970-01-01~2000-01-01 4 智能软件研发行业产业链上游为硬件与基础软件供应10 积分 | 18 页 | 5.48 MB | 3 月前3
大模型技术深度赋能保险行业白皮书151页(2024)于大模型技术的研发 与应用,积极探索其在保险业务中的无限可能。阳光保险集团作为行业的先行者和探索 者,于2023年初率先启动了“阳光正言GPT大模型战略工程”,旨在通过大模型技术的深度 应用,推动保险业务模式的重塑与升级。 经过一年的实践与沉淀,可以看到,2024年是大模型技术在各行各业的应用落地之 年。这一年,我们见证了大模型技术从理论探索走向实际应用,从概念验证进入规模化部 署的关 更重要的是,我们深刻认识到大模型技术与保险行业的深度融合,不仅将推动保险业 务模式的深刻变革,还将重塑保险行业的竞争格局和生态体系。通过精准预知风险、主动管 理风险,大模型技术将助力保险公司实现从“粗放预测”向“精准预知”、从“等量管理”向“减 量管理”的转型升级。这一转变不仅将提升保险公司的核心竞争力,还将为消费者提供更加 个性化、高效、便捷的保险服务,推动保险行业向更高质量、更高效率、更高附加值的方向 要支柱和风险管理的重要力量,必须紧跟时代步伐,把握科技革命的历史机遇。我们希望通 过本白皮书的发布,为保险业做好科技金融和数字金融两篇大文章提供有力支持,推动保 险行业从科技赋能向科技引领的转变。同时,我们也呼吁行业同仁和合作伙伴加强交流与 合作,共同推动科技保险和数字保险的发展,共创保险行业的美好未来! 最后,我们要诚挚感谢所有参与白皮书编写的专家学者、行业同仁和技术伙伴。正是大 家的共同努力和20 积分 | 151 页 | 15.03 MB | 2 天前3
信息服务-AI Agent(智能体):从技术概念到场景落地间的交互过程可能出现错误循环且 输出结果不一定符合需求,tokens 成本远高于普通 LLMs。 人工智能发展迅猛,智能体商业化落地:未来多方面推动人工智能发展,应用级 别智能体有望快速落地。国内各地相继出台关于人工智能的发展政策,推动其为 重要的研究方向。预计 2026 年国内人工智能市场规模超过 260 亿美元,全球人 工智能市场规模 2025 年超 6 万亿美元。海外以美国为例,相关政策出台时间较早, 万亿美元。海外以美国为例,相关政策出台时间较早, 人工智能领域发展更加成熟,许多智能体应用已在服务各类企业。并且美国有意 与人工智能强国组成战略伙伴,共同发展 AI 科技。智能体发展能推动政府、金融、 制造、能源、医疗、零售等行业的智能化应用向多模态和跨模态转变。 投资建议:我们认为未来智能体(AI Agent)的前景十分广阔,随着大模型的发展, 智能体将从概念走向实际应用,成为各行业的重要助力。通过多模态大模型,智 消耗问题。另外,中国政府积极推动人工智能的发展,各地相继出台相关政策。 预计到 2026 年,中国人工智能市场规模将超过 260 亿美元,将在政府、金融、 制造、能源、医疗、零售等多个领域实现智能化应用。结合国家政策支持以及各 大企业的积极投入,智能体技术将不断进步,特别是在算力快速增长的背景下, AI Agent 的发展前景更加可期。多模态智能体的出现,将进一步推动各行业智能 化应用的升级,智能体的商业化将迎来新的突破。10 积分 | 33 页 | 4.71 MB | 2 天前3
抢滩接入Deepseek,教育行业迈入AI深度整合新阶段I技术平权浪潮 的"风暴眼"。各大细分赛道头部企业如学而思、网易有道、中公教育、希沃等纷纷 抢滩接入DeepSeek-R1大模型,并围绕DeepSeek能力开启软件与硬件业务方向的 智能升级、创新,推动行业走向AI原生教育的新生态。 一、教育企业快速拥抱DeepSeek,以其思维链、高性价 比优势掀起新一轮变革 DeepSeek-R1自2025年1月20日正式发布以来,热度快速且持续增长,C端流量爆 发。此外,DeepSeek API调用 成本显著低于其他主流商业大模型及自研教育大模型成本,降低教育企业发展 AI业务的门槛。 在以上能力优势之下,DeepSeek为AI教育的突破发展带来了核心推动力。月狐分 析选取学而思、网易有道为代表,进一步分析教育企业基于DeepSeek开展的新一 轮AI教育革新。 二、学而思:DeepSeek为基座,融合九章大模型能力, 实现双协同、生态化布局 学习工具,放大自 身专业内容积累和大模型技术优势。此外,学而思表示还在探索DeepSeek在公司 内部业务场景的应用,如推动客服家教沟通、视频脚本制作等场景的降本提效。 通过引入DeepSeek进行“硬件+软件+内容+运营”的多维智能升级,学而思有望 加速迭代升级产品服务,推动K12教育业务的全面AI化,进一步巩固行业头部地 位。 学而思围绕DeekSeek的AI教育布局情况 三、网易有道:融合底层技术构建混合架构,升级全线10 积分 | 6 页 | 1.23 MB | 2 天前3
埃森哲报告:AI赋能保险,三大应用场景如何重构价值链?pdf定义其工作方式,打造创新产品和服务,提升客户体验。与此同时,这一传 统行业接受新技术仍面临多方的挑战。 无论是用智能自动化取代重复性的手动操作,还是帮助员工增强判断能力, 改善与客户之间的互动,抑或是设计出智能产品,技术都将推动保险公司的 发展,帮助他们持续地盈利。动脉网(微信号:vcbeat)编译了埃森哲发布 的“AI+保险”行业报告,该报告的重点包括: •人工智能将帮助保险公司重新规划现有流程,设计创新产品,提升客户体验; 在保险公司面临巨大压力之际,人工智能领域正在取得飞速进展。竞争变得 异常激烈,新的竞争者正在颠覆现有的商业模式。受其他行业技术快速发展 的影响,消费者对保险公司的期望也会越来越高。 因此,保险公司必须找到提高运营效率、推动产品创新、改善客户和员工体 验的新方法。例如,为什么客户不能像追踪亚马逊物流或优步司机那样追踪 3 他们的保险索赔进度呢?在与终端用户的交流上,这只是保险公司落后于其他 消费者行业的一个方面。 认为,智能技术将彻底改变这个行业。 大多数保险公司都表示,与两年前相比,它们在人工智能技术上的投资有所 增加,并计划在未来增加投资。保险公司发现,它们最初的投资已经取得了 一定成效,并且意识到人工智能的不断进步将推动更多的技术变革——尤其 是在产品开发、风险管理和客户体验方面。 保险公司正在大力投资人工智能技术,他们预计在未来三年对以下领域进行 投资:深度学习(78%)、嵌入式智能解决方案(81%)、机器学习(81%)、10 积分 | 11 页 | 422.61 KB | 2 天前3
智慧地铁城市轨道交通行业AI大模型应用设计方案安全监测与预警:构建基于大数据的安全监测系统,实时监测 设备运行状态,并对异常情况进行自动报警,提升整体安全 性。 总的来看,AI 大模型在城市轨道交通行业的应用不仅是一种技 术革新,更是推动行业进步的重要力量。通过将 AI 技术与传统轨 道交通运营管理深度融合,可以为提升城市轨道交通的高效性、安 全性和服务质量提供强有力的支持,为城市出行带来革命性的变 化。最终,建设更加智能、高效、便捷的城市轨道交通系统,满足 型可以帮助分析这些数据,为决策提供支持,提升服务效率和 质量。 4. 可持续发展的需求:在当前全球倡导可持续发展的趋势下,城 市轨道交通必须采取更科学的运营方式。AI 大模型通过优化 调度和能耗管理,能够显著降低运营成本,推动绿色出行。 为具体展示 AI 大模型在城市轨道交通中的应用场景,可以列 举以下几个关键应用: 旅客流量预测与管理:通过历史数据和实时数据的结合,利用 AI 大模型预测特定时间段的客流量,并根据预测结果调整列 结果评估与反馈机制:建立完善的效果评估方法,确保 AI 大 模型的应用能够持续改进和优化。 通过以上结构的安排,本文旨在为城市轨道交通行业的管理者 和技术团队提供全面而具体的 AI 大模型应用实施指南,以推动行 业的数字化转型。在实施过程中,将重点考虑安全性、可行性与经 济性,确保各项技术能够落地实现,最终为城市轨道交通提供更高 效、安全和友好的服务。 2. AI 大模型在城市轨道交通的应用场景40 积分 | 154 页 | 284.34 KB | 5 月前3
AIGC生成式AI大模型医疗场景应用可行性研究报告(152页 WROD)决策支持等。 技术集成:与现有医疗信息系统、设备接入 AI 模型,实现无 缝对接。 合规与安全:制定数据保护政策,确保遵循 HIPAA 等相关法 规,保护患者隐私。 这些策略的实施不仅能够推动 AI 生成式大模型在医疗领域的 应用发展,还将为医务人员提供强大的技术支持,从而更好地服务 于患者。通过充分利用这一新兴技术,我们可以期待医疗领域的进 步,实现更高效、智能的医疗服务。 2 据分布的逐步 去噪 过程,生成高维数据,特别是在图像生成领域 表现出了竞争力。 综上,当前 AI 生成式大模型的发展格局展示了多样化的主流 算法,各具特点且适用于不同的应用场景。这些算法的进步推动了 医疗领域的创新应用,为医疗数据的处理、分析和生成提供了强大 的技术支撑。同时,在选择特定算法应用于医疗场景时,应根据具 体需求、数据类型和生成目标进行综合考量,以实现最佳效果。 算法类别 逐步生成数据,保持时间序列连续性 语音合成、文本生成 扩散模型 通过去噪过程生成高维数据 图像修复、颜色化、医学成像 随着技术的不断进步,主流生成式算法的有效应用将为解决医 疗领域的复杂问题提供新的思路和方案,同时推动个性化医疗和精 准医疗的发展。 2.2.2 应用案例 在当前医疗领域,AI 生成式大模型的应用案例逐渐增多,涵盖 了诊断、治疗、个性化医疗、患者管理等多个方面。以下是一些具 体的应用案例,60 积分 | 159 页 | 212.70 KB | 4 月前3
实现自主智能供应链:2035年企业竞争的新高地字核心构建坚实的数据基础,并以此为依托实现 平台与治理框架的标准化。其次,对AI赋能技术进 行战略性投资,通常先从目标明确的试点项目入 手,待方案验证有效后再进行规模化推广。最后, 重塑人与技术的协作模式,推动人的角色从执行 例行工作转变为战略性指导与统筹监督。 在自主智能供应链的转型浪潮中,未来的分 界已然清晰可见:那些积极拥抱自主智能供应链 的企业,将创造出前所未有的商业价值,并构建起 强大 人力依然是核心要素。事实上,最高效的自主智� 供应链体系将实现人员角色转型⸺从任务执行 者转变为系统决策的指导者与监督者。我们观察 到,这一转变正通过“人机协作”的渐进式发展 在企业中逐步实现,每个阶段都推动着效益提升。 此外,通过将资深团队成员数十年积累的专 业知识和洞察进行系统化梳理与编码标准化,自 主智能供应链有助于确保核心知识的保留,并传 承至下一代员工,即便在资深团队成员陆续退休 的情况下,仍能维持知识体系的可持续性。 在不可预测的环境中增强运营可靠性,这对于那 些将快速履约视为核心竞争优势的行业而言,更 是重大利好。 可持续性的提升是另一项重要 成果。近四成(39%)受访企业表示, 得益于更优的再利用、再循环和资 源效率,自主化运营将显著推动供 应链的循环性。 实现自主智能供应链 7 1. 构建坚实且安全的数据基础 2. 投资关键AI技术,加速规模化 战略布局 3. 重构人与技术的协作模式 图1 企业应对中断的反应时间与恢复时间0 积分 | 28 页 | 2.74 MB | 3 月前3
从DeepSeek探讨大语言模型在建筑及能源行业的应用趋势和技术方法我们目前已经进入计算科学时代,云计算在未来的研究中可以发挥重要作用。未来通过计算能力, 我们可以利用 Al 扩展人类的创造力,进一步探索世界。 " 新时代的核心动力: · 算力: 提 供 强大的计算能力,推动算法复杂性提升 · 算 法 :更加精准、高效的智能算法,支持决策优化 · 数据: 数据规模和质量驱动模型训练与性能优化 传统模式的局限性: · 靠经验驱动,无法快速适应复杂变化 · 难以扩展,效率低,智能化程度受限 能耗的支持,推动模型性能最大化 面临的挑战: · 开发难度:当前人工智能模型的开发周期长,难度高,存在成本与效率的矛盾 · 规模化瓶颈:从试验性产品到生产线产品,需要解决模型适配性与通用性问题 解决路径: 口推动模型的柔性制造,实现更高效、更低成本的开发流程 口借助自动化、模块化和流水线技术,降低生产成本,提升部署速度 DeepSeek 支撑范式突破:降低开发难度,推动能源领域智力普惠 model from'low'to 'medium'. 顶尖人工智能专家对于 Al 影响就业的判断 (2025 年 1 月 ) 73/80 大趋势:人工智能推动科技革命与产业变革 75/80 口人工智能是新一轮科技革命和产业变革的核心驱动力。加快发展新一代人工智 能技术,将决定国家在未来科技与产业领域的战略地位10 积分 | 78 页 | 33.88 MB | 6 月前3
共 32 条
- 1
- 2
- 3
- 4
