2025年大模型一体机服务商研究报告-亿欧智库报 告 ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ◆ ◆ ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125)20 积分 | 16 页 | 3.57 MB | 5 月前3
CAICT算力:2025综合算力指数报告近年来,AI 技术迅猛发展,算力作为数字经济的基础资源,其重要性与日 俱增。我们进入了一个计算力驱动创新的时代,这不仅影响着科技领域的演进, 更深刻地改变着社会的方方面面。目前,国家正按照“点、链、网、面”体系化 推进全国一体化算力网络工作,综合算力指数作为衡量我国算力发展水平的重 要标尺,相关研究工作意义深远。 随着 AI 在千行百业加速渗透,算力赋能数字经济社会的效能,不仅仅取决 于算 潜力尚待充分挖掘,亟需通过深化一体化算力网建设,强化统筹协 同与动态优化能力;全面提升算力供给质效,加速推动结构的迭代 升级;夯实存力运力底座,促进“算存网”协同演进;构建绿色低碳 体系,加速基础设施绿色升级;深度开展融合创新实践,助力产业 生态繁荣发展。 《2025 综合算力指数》全面呈现了我国综合算力发展现状,挖 掘各地区综合算力发展问题,并给出发展建议,为我国算力产业“点、 链、网、面”体系化发展提供参考,为数字中国建设实现跨越式发展 .............. 36 (一)深化一体化算力网,强化统筹协同与动态优化.................................. 36 (二)提升算力供给质效,推动结构迭代升级.............................................. 37 (三)夯实存力运力底座,促进“算存网”协同演进.........................20 积分 | 54 页 | 4.38 MB | 1 月前3
信息服务-AI Agent(智能体):从技术概念到场景落地制造、能源、医疗、零售等行业的智能化应用向多模态和跨模态转变。 投资建议:我们认为未来智能体(AI Agent)的前景十分广阔,随着大模型的发展, 智能体将从概念走向实际应用,成为各行业的重要助力。通过多模态大模型,智 能体能够整合图片、语音等异构数据,提高任务处理效率,并解决跨行业、跨领 域的问题。技术方面,智能体具备长期和短期记忆、自主规划、工具使用和自动 执行任务的能力。这些能力不仅能提高工作效率,还能为用户提供更好的体验。 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具资源和监督结 果。OpenAI 定义的智能体具有长期和短期记忆、自主规划、工具使用和自动执行任务 的能力,能提高工作效率和用户体验。另外,智能体也分为单智能体和多智能体。单智 能体通过试错学习在单一环境中行动,追求最大奖励,多用于简易任务。多智能体在博 弈环境中行动,追求长期累积奖励,多用于复杂测试。 1.1Agent 模式架构解析 Agent 有效减少人类工作总量,人与 目前的应用大多都在概念层面,但随着大模型竞争加快、政策鼓励研发投 入、更多企业参与 AI 研究等因素,应用层面的 AI Agent 推进速度加快。智能体大致可 以分为六类,根据他们被设计出的特点,可以作用在不同的应用领域上。不同类别的智 能体给予应用层面上更多研发方向,像目前关注度较高的自动驾驶技术、智能电网控制、 能源管理等都能被垂类智能体覆盖。结合多模态大模型,自动化和情感需求类智能体已 落地。但商业化智能体仍需考虑成本问题,由于智能体之间的交互过程可能出现错误循10 积分 | 33 页 | 4.71 MB | 1 月前3
DeepSeek洞察与大模型应用-人工智能技术发展与应用实践• 山东省委书记于开年第一天工作会上,明确部署省 数据局研究DS,研究人工智能 • 某央企董事长在开年第一天即召集全管理层会议, 开展 AI 全面赋能生产运营工作部署 • 中石油、中石化、南网、星网、中广核、中铝等央 国企均在拥抱对接或重新研判 DS开源策略全面冲击基础模型商业模式,将大厂在C端、B端过去一年构建的技术优势拉回同一起跑线 ,市场竞争从一阶段比拼模型能力,进入比拼应用、数据、工程化交付能力的第二阶段 博通:在ASIC(专用集成电路)定制芯片领域表现 突出,2024年市值突破万亿美元 l 华为:昇腾系列芯片,产品性能和销量国内领先, 910B性能对标A100 l 其它国产芯片厂商:海光、寒武纪、燧原科技、沐 曦、天数智芯、摩尔线程、壁仞科技、昆仑芯科技 、阿里平头哥等 n 美国企业在GPU芯片领域占据绝对优势,尤其英伟达芯片性能高、生态成熟 n 国产芯片近几年进步很快,但在性能、产能、软件适配和生态方面还有显著差距 5-1210, #17 开放 阿里巴巴 中国 Qwen2.5-Max, #7 Qwen2.5-plus-1127, #16 Qwen2.5-72B-Instruct, #33 不开放 不开放 开放 智谱 中国 GLM-4-Plus-0111, #9 不开放 阶跃星辰 中国 Step-2-16K-Exp, #9 不开放 xAI 美国 Grok-2-08-13, #16 不开放 零一万物 中国 Yi-Lightning10 积分 | 37 页 | 5.87 MB | 7 月前3
从大模型、智能体到复杂AI应用系统的构建(61页 PPT)智能体 (AI Agent) 是大模型 (Brain) 的眼 (Observation) 和手 (Tools) 2. 通过智能体 (AI Agent) 可以基于大模型实现各种较为复杂的 智 能应用系统 小结三: 四链融合产业大脑案例 如何精准科学地识别并批量形成具有战略意义的 " 卡脖子 " 问题清单 , 是我国实 现关 键核心技术突破要解决的首要任务 ,直接影响国家产业安全战略决策与创新资 造 新 质 生 产 力 的 重 要 抓手 行业知识更深 业务流程更深 产业网链大模型 招商服务 技术分析 情报服务 产业研究 知识问答 报告生成 面向产业创新领域, 以通用中文大模型为基座, 注入数十亿海量产业数据和数百个产业链知识图谱, 结合工具集、 知识库和指令微调训练得到产业网链大模型 。 • 底层拥有强大的产业数据和知识图谱数据,避免产业基础能力不足; • 实现智能化、精细化的产业治理模式,推动产业创新与发展, 加强产业创新生态完善; • 具备强大的自动化处理产业信息能力、智能分析与预测 ,提升服务效率,降低人力成本。 产业网链大模型训练过程 产业网链大模型 人才库 3000 万 + 专家库 3 万 + 全球海关 20 亿 + 大宗商品交易行情 15 亿 + 政策 590 万 + 资讯 4000 万 + 招投标 14 亿20 积分 | 61 页 | 13.10 MB | 1 月前3
埃森哲报告:AI赋能保险,三大应用场景如何重构价值链?pdf推动保险公司的 发展,帮助他们持续地盈利。动脉网(微信号:vcbeat)编译了埃森哲发布 的“AI+保险”行业报告,该报告的重点包括: •人工智能将帮助保险公司重新规划现有流程,设计创新产品,提升客户体验; •保险公司必须采取合适的战略,来更好地管理人力资源; •保险公司应该改变现有工作方式,包括采用 RPA(机器人流程自动化)以及智 能决策支持系统; 2 •保险公司 保险科技初创企业也意识到了这些技术的重要性,许多公司都将人工智能作 为战略核心,他们的员工都能熟练使用人工智能工具。埃森哲分析了全球 450 多起保险科技公司的投融资情况,结果显示,2014 至 2016 年间,与人工智 能或智能自动化相关的投资数量增长了大约两倍。 只有通过智能框架来提高员工的工作效率,利用智能自动化和数据分析实现 产品创新,保险公司才可以借助人工智能实现效益最大化。 5 法需要人工监督。事实上,根据埃森哲的研究,68%的保险公司高管预计, 智能技术将在未来三年内为他们的公司带来就业机会的净增长。 如果保险公司想要应用人工智能技术,就需要相关员工(数据科学家、人工智 能开发人员等)具备构建、使用和维护这些技术的技能。这意味着要引入一些 顶级的技术人才,让他们进入一个发展相对缓慢的传统行业。埃森哲通过对 保险科技的研究发现,三分之一的保险公司认为,“缺乏智能技术的专业人才”10 积分 | 11 页 | 422.61 KB | 1 月前3
基于大语言模型技术的智慧应急应用:知识管理与应急大脑点,该观点认为智能源于大脑神经元的物理结构和 复杂的网络连接,是由大量如神经元的简单元素通 过非线性相互作用产生的集体行为结果,智能行为 的模拟可以通过构建大量简单计算单元组成的大规 模 网 络 ,并 不 断 调 整 网 络 单 元 间 连 接 权 重 来 实 现[9-10]。优势在于从数据中学习的能力,善于处理复 杂的、模糊的问题。 1.1.2 主动学习 与传统结构化的知识获取方式相比,大模型采 平得到了较大提高,例如,视频识别技术应用在安 全监管中实现的安全生产风险智能监测预警,无人 机及快速建模技术在应急救援中实现的灾害环境智 能感知等。这些技术侧重外部世界数据的收集和处 理,加强了系统的视觉、听觉和触觉等感知能力,使 得应急系统能够及时捕捉外部环境变化。按照机器 智能水平由低到高的 4 个层次:数据智能、感知智 能、认知智能和自主智能[22],应急系统的智能水平达 到了感知智能这一层次。 从认知智能层次来看,当前系统思维能力不足, 和不同的应用场景之中传播。应急管理知识创新依 赖于这样一个开放的知识生产网络,网络中节点联 结密度影响了知识的传播、积累以及最终解决复杂 问题的能力,是影响知识创新能力的关键变量。 利用大语言模型技术建设应急管理知识生产网 络中的超级节点,将各领域的行业专家、各学科的 专业学者、各应急部门的专业人员等各类应急知识 生产者有机联合起来,参与每一轮问题解决中,最 大化网络中节点联结密度,超越跨学科知识生产中 知识生产场所和应用场景的物理局限,实现知识生20 积分 | 8 页 | 3.21 MB | 1 月前3
算力与场景双驱动,智能软件研发进入“平台 服务”融合新阶段 头豹词条报告系列借强大的经济实力与浓厚的科技创 新氛围,为软件企业的蓬勃成长提供了得天独厚的环境。 下 产业链下游环节分析 6 招商银行股份有限公司 中国工商银行股份有限公司 中国农业银行股份有限公司 浙江网商银行股份有限公司 中国银行股份有限公司 山东第一医科大学附属省立医院(山东省立医院) 爱尔眼科医院集团股份有限公司 北京和睦家医院有限公司 中国国家铁路集团有限公司 中国铁路广州局集团有限公司 未来智能硬件出货量增加将带动对与之配套的智能软件的需求增长,从而推动智能软件研发行业市场规模增长。 智能硬件设备的普及与多样化,正不断拓展智能软件的应用场景。智能家居设备依赖于智能家居控制系统软件进行高效管理,而智能汽车则需智 能驾驶辅助系统软件提供有力支撑。这些新兴应用场景的涌现,为智能软件研发行业开辟了更为丰富的市场机遇。未来,伴随人工智能的演进与 智能家居体系的优化,中国智能家居行业将持续发展。预计至2026年, 极融入主流大型语言模型,通过统一认证、模型调试等措施,有效管理登录认证、计费、审查日志及监控等功能,并将其与核心产品线如 WPSOffice、金山文档、WPS365深度融合,为用户提供前沿的数智化办公解决方案。截至2023年12月31日,金山办公主要产品月度活跃设备数 达5.98亿,同比增长4.36%,年度付费个人用户数增至3,549万,同比增长18.43%。AI技术,尤其是大型语言模型的应用,通过减轻开发者的手10 积分 | 18 页 | 5.48 MB | 4 月前3
2025年以计算加速迈进智能化未来-IDC新一代云基础设施实践报告以计算加速迈进智能化未来 ⸺IDC新一代云基础设施实践报告 趋势:云服务能力持续跃升,加速企业数智化转型与创新 01 目录 1.1 技术全面升级,为复杂的企业在线业务提供保障 1.2 软硬一体协同优化,应对AI时代激增的数据冲击 1.3 持续的融合创新,助力企业的国际化布局 挑战:企业多元业务需求与海量AI数据的冲击 02 2.1 在线业务面临性能与效率的极限挑战 �.� AI数据处理与计算协同的复杂度激增 等服务平台的性能跃升。在IDC面向全球1350家企 业所做的数字化进程与业务成果调研中,应用的可用性、综合安全性、应用的性能等都成为企业 核心关注的目标。 趋势:云服务能力持续跃升 加速企业数智化转型与创新 01 IDC预计,云数据中心数据增长在2025年为58.1ZB,����年将翻4倍,达到228.9ZB,����-���� 年复合年增长率为40.9%。 图1 全球云数据中心数据增长,2024-2029 一 方面,为满足大数据、数据库、3D视频处理在内的一些单核敏感型业务的需要,云服务仍将 持续提升单核、单实例性能。 多技术融合提升连接性能:云服务商综合利用内存/缓存、PCle、RDMA、IP网、EIP、VPC 等一系列技术升级和软硬件融合优化成果,大幅提升云、边、端不同位置服务之间的协同效 率,这对于保障在线业务的体验至关重要。 存储方案升级应对大数据量冲击:云服务商通过采用更高性能的存储设备和更高效的存储架10 积分 | 27 页 | 5.31 MB | 4 月前3
大模型技术深度赋能保险行业白皮书151页(2024)仅深刻改变了人机交互的方式,更预示着一个由大模型引领的智能新时代的到来。比尔· 盖茨的赞誉、马斯克的断言以及马化腾的深刻洞察,都从不同角度揭示了大模型技术对于 人类社会发展的深远影响。而国家网信办等七部门联合发布的《生成式人工智能服务管理 暂行办法》,则为中国大模型技术的健康发展提供了坚实的政策保障和合规框架。 在保险行业,这一技术革命同样引发了深刻的变革。国内外众多保险公司和保险科技 向实际应用,从概念验证进入规模化部 署的关键阶段。因此,本年度《大模型技术深度赋能保险行业白皮书》的编写,不仅是对过 去一年技术发展的总结与回顾,更是对未来应用前景的展望与规划,旨在为保险行业的智 能化转型提供技术参考和实践建议。 白皮书基于阳光保险的大模型落地实践经验,深入剖析了大模型技术在保险行业的落 地应用路线。我们详细阐述了数据准备、模型精调、工程化适配、模型评测等关键环节的技 · · · · · · · · · · · · 27 2.1.1 保险业面临前所未有的挑战· · · · · · · · · · · · · · · · · · · · · 27 2.1.2 数智化转型是解决之道及不二选择· · · · · · · · · · · · · · · · 28 2.2 国内外相关政策分析· · · · · · · · · · · · · · · · · · · ·20 积分 | 151 页 | 15.03 MB | 1 月前3
共 35 条
- 1
- 2
- 3
- 4
